首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The solar, geomagnetic, gravitational and seismic activities can cause spatial and temporal (hourly, diurnal, seasonal and annual) variabilities of the ionosphere. Main observable ionospheric parameters such as Total Electron Content (TEC) can be used to quantify these. TEC is the total number of electrons on a ray path crossing the atmosphere. The network of world-wide Global Positioning System (GPS) receivers provide a cost-effective solution in estimating TEC over a significant proportion of global land mass. This study is focused on the analysis of the variations of ionosphere over a midlatitude region using GPS-TEC estimates for three Sun Spot Numbers (SSN) periods. The investigation is based on a fast and automatic variability detection algorithm, Differential Rate Of TEC (DROT). The algorithm is tested using literature data on disturbances generated by a geomagnetic activity, a Solar Flare, a Medium Scale Travelling Ionospheric Disturbance (MSTID), a Large Scale TID (LSTID) and an earthquake. Very good agreement with the results in the literature is found. DROT is applied to IONOLAB-TEC estimates from nine Turkish National Permanent GPS Network (TNPGN Active) stations over Turkey to detect the any wave-like oscillations, sudden disturbances and other irregularities during December, March, June, September months for 2010, 2011, 2012 years. It is observed that DROT algorithm is capable of detecting both small and large scale variability due to climatic, gravitational, geomagnetic and solar activities in all layers of ionosphere. The highest DROT values are observed in 2010 during winter months. In higher solar activity years of 2011 and 2012, DROT is able to indicate both seasonal variability and severe changes in ionosphere due to increased number of geomagnetic storms and local seismic activities.  相似文献   

2.
The Earth's ionosphere and especially its equatorial part is a highly dynamical medium. Geostationary satellites are known to be a powerful tool for ionospheric studies. Recent developments in BDS-GEO satellites allow such studies on the new level due to the best noise pattern in TEC estimations, which corresponds to those of GPS/GLONASS systems. Here we used BDS-GEO satellites to demonstrate their capability for studying equatorial ionosphere variability on different time scales. Analyzing data from the equatorial SIN1 IGS station we present seasonal variations in geostationary slant TEC for the periods of high (October 2013 - October 2014) and low (January 2017 - January 2018) solar activity, which show semi-annual periodicity with amplitudes about 10 TECU during solar maximum and about 5 TECU during the solar minimum. The 27-day variations are also prominent in geostationary slant TEC variations, which correlates quite well with the variations in solar extreme UV radiation. We found semi-annual pattern in small scale ionospheric disturbances evaluated based on geostationary ROTI index: maximal values correspond to spring and fall equinoxes and minimum values correspond to summer and winter solstices. The seasonal asymmetry in ROTI values was observed: spring equinox values were almost twice as higher than fall equinox ones. We also present results on the 2017 May 28–29 G3 geomagnetic storm, when ~30 TECU positive anomaly was recorded, minor and final major sudden stratospheric warmings in February and March 2016, with positive daytime TEC anomalies up to 15–20 TECU, as well as the 2017 September 6 X9.3 solar flare with 2 TECU/min TEC rate. Our results show the large potential of geostationary TEC estimations with BDS-GEO signals for continuous monitoring of space weather effects in low-latitude and equatorial ionosphere.  相似文献   

3.
大耀斑期间向日面电离层总电子含量的响应个例分析   总被引:3,自引:0,他引:3  
利用2001年4月15日1336UT耀斑爆发期间向日面GPS观测数据提取的总电子含量的时间变化曲线。分析了向日面电离层对这次耀斑的响应特点.结果表明,耀斑期间向日面电离层出现了总电子含量突增事件.最大总电子含量增加量约为2.6TECU,在0600LT和1800LT都观测到了总电子含量突增,世增加幅度仅为0.5-1TECU.在高纬地区,由于电离层闪烁,从TEC时间变化曲线提取不出来总电子含量增加值.从各卫星星下点处的TEC增加量和各星下点处的太阳天顶角的关系可以看到,TEC增加量与太阳天顶角有关,太阳天顶角越大,TEC增幅越小。另外,从总电子含量时间变化率曲线上还观测到了时间同步的小尺度扰动,通过与耀斑期间硬X射线辐射通量的比较,发现两者有明显的相关性,电离层中的这种扰动与耀斑期间的硬X射线或远紫外辐射有关.  相似文献   

4.
2017年9月8日发生了一次强磁暴,Kp指数最大值达到8.利用区域电离层格网模型(Regional Ionosphere Map,RIM)和区域ROTI(Rate of TEC Index)地图,分析了磁暴期间中国及其周边地区电离层TEC扰动特征和低纬地区电离层不规则体的产生与发展情况,同时利用不同纬度IGS(International GNSS Service)测站BJFS(39.6°N,115.9°E),JFNG(30.5°N,114.5°E)和HKWS(22.4°N,114.3°E)的GPS双频观测值,获取各测站的ROTI和DROT(Standard Deviation of Differential ROT)指数变化趋势.结果表明:此次磁暴发生期间电离层扰动先以正相扰动为主,主要发生在中低纬区域,dTEC(differential TEC)最大值达到14.9TECU,随后电离层正相扰动逐渐衰减,在低纬区域发生电离层负相扰动,dTEC最小值达到-7.2TECU;在12:30UT-13:30UT时段,中国南部低纬地区发生明显的电离层不规则体事件;相比BJFS和JFNG两个测站,位于低纬的HKWS测站的ROTI和DROT指数变化更为剧烈,这表明电离层不规则体结构存在纬度差异.   相似文献   

5.
The ionosphere induces a time delay in transionospheric radio signals such as the Global Positioning System (GPS) signal. The Total Electron Content (TEC) is a key parameter in the mitigation of ionospheric effects on transionospheric signals. The delay in GPS signal induced by the ionosphere is proportional to TEC along the path from the GPS satellite to a receiver. The diurnal monthly and seasonal variations of ionospheric electron content were studied during the year 2010, a year of extreme solar minimum (F10.7 = 81 solar flux unit), with data from the GPS receiver and the Digisonde Portable Sounder (DPS) collocated at Ilorin (Geog. Lat. 8.50°N, Long. 4.50°E, dip −7.9°). The diurnal monthly variation shows steady increases in TEC and F2-layer critical frequency (foF2) from pre-dawn minimum to afternoon maximum and then decreases after sunset. TEC show significant seasonal variation during the daytime between 0900 and 1900 UT (LT = UT + 1 h) with a maximum during the March equinox (about 35 TECU) and minimum during the June solstice (about 24 TECU). The GPS-TEC and foF2 values reveal a weak seasonal anomaly and equinoctial asymmetry during the daytime. The variations observed find their explanations in the amount of solar radiation and neutral gas composition. The measured TEC and foF2 values were compared with last two versions of the International Reference Ionosphere (IRI-2007 and IRI-2012) model predictions using the NeQuick and CCIR (International Radio Consultative Committee) options respectively in the model. In general, the two models give foF2 close to the experimental values, whereas significant discrepancies are found in the predictions of TEC from the models especially during the daytime. The error in height dependent thickness parameter, daytime underestimation of equatorial drift and contributions of electrons from altitudes above 2000 km have been suggested as the possible causes.  相似文献   

6.
利用行星际太阳风参数与太阳活动指数、地磁活动指数、电离层总电子含量格点化地图数据,首次基于一种能处理时间序列的深度学习递归神经网络(Recurrent Neural Network,RNN),建立提前24h的单站电离层TEC预报模型.对北京站(40°N,115°E)的预测结果显示,RNN对扰动电离层的预测误差低于反向传播神经网络(Back Propagation Neural Network,BPNN)0.49~1.46TECU,将太阳风参数加入预报因子模型后对电离层正暴预测准确率的提升可达16.8%.RNN对2001和2015年31个强电离层暴预报的均方根误差比BPNN低0.2TECU,将太阳风参数加入RNN模型可使31个事件的平均预报误差降低0.36~0.47TECU.研究结果表明深度递归神经网络比BPNN更适用于电离层TEC的短期预报,且在预报因子中加入太阳风数据对电离层正暴的预报效果有明显改善.   相似文献   

7.
GPS observations from EUREF permanent GPS network were used to observe the response of TEC (Total Electron Content) to the total solar eclipse on October 3, 2005, under quiet geomagnetic conditions of the daytime ionosphere. The effect of the eclipse was detected in diurnal variations and more distinctly in the variations of TEC along individual satellite passes. The trough-like variations with a gradual decrease and followed by an increase of TEC at the time of the eclipse were observed over a large region. The depression of TEC amounted to 3–4 TECU. The maximum depression was observed over all stations located at the maximum path of the solar eclipse. The delay of a minimum level of TEC with respect to the maximum phase of the eclipse was about 20–30 min.  相似文献   

8.
利用两个中纬度台站GPS观测数据提取的GPS卫星硬件延迟,分析了不同太阳活动情况下估算的硬件延迟稳定性和统计特征,结合同期电离层观测数据,研究了电离层状态对硬件延迟估算结果的影响.研究结果表明,基于太阳活动高年(2001年)GPS观测数据估算的硬件延迟稳定性要低于太阳活动低年GPS观测数据的估算结果,利用2001年GPS数据估算的卫星硬件延迟年标准偏差(RMS)平均值约为1TECU,而2009年GPS数据估算的卫星硬件延迟年标准偏差平均值约为0.8TECU.通过对2001年和2009年北京地区电离层F2层最大电子密度(NmF2)变化性分析,结合GPS硬件延迟估算方法对电离层时空变化条件的要求,认为硬件延迟稳定性与太阳活动强度的联系是由不同太阳活动条件下电离层变化的强度差异引起的.   相似文献   

9.
The effects of physical events on the ionosphere structure is an important field of study, especially for navigation and radio communication. The paper presents the spatio-temporal ionospheric TEC response to the recent annular solar eclipse on June 21, 2020, which spans across two continents, Africa and Asia, and 14 countries. This eclipse took place on the same day as the June Solstice. The Global Navigation Satellite System (GNSS) based TEC data of the Global Ionosphere Maps (GIMs), 9 International GNSS Service (IGS) stations and FORMOSAT-7/COSMIC-2 (F7/C2) were utilized to analyze TEC response during the eclipse. The phases of the TEC time series were determined by taking the difference of the observed TEC values on eclipse day from the previous 5-day median TEC values. The results showed clear depletions in the TEC time series on June 21. These decreases were between 1 and 9 TECU (15–60%) depending on the location of IGS stations. The depletions are relatively higher at the stations close to the path of annular eclipse than those farther away. Furthermore, a reduction of about ?10 TECU in the form of an equatorial plasma bubble (EPB) was observed in GIMs at ~20° away from the equator towards northpole, between 08:00–11:00 UT where its maximum phase is located in southeast Japan. Additionally, an overall depletion of ~10% was observed in F7/C2 derived TEC at an altitude of 240 km (hmF2) in all regions affected by the solar eclipse, whereas, significant TEC fluctuations between the altitudes of 100 km ? 140 km were analyzed using the Savitzky-Golay smoothing filter. To prove TEC depletions are not caused by space weather, the variation of the sunspot number (SSN), solar wind (VSW), disturbance storm-time (Dst), and Kp indices were investigated from 16th to 22nd June. The quiet space weather before and during the solar eclipse proved that the observed depletions in the TEC time series and profiles were caused by the annular solar eclipse.  相似文献   

10.
In this research, as part of working towards improving the IRI over equatorial region, the total electron content (TEC) derived from GPS measurements and IRI-2007 TEC predictions at Chumphon station (10.72°N, 99.37°E), Thailand, during 2004–2006 is analyzed. The seasonal variation of the IRI-2007 TEC predictions is compared with the TEC from the IRI-2007 TEC model with the option of the actual F2 plasma frequency (foF2) measurements as well as the TEC from the GPS and International GNSS service (IGS). The Chumphon station is located at the equatorial region and the low latitude of 3.22°N. For a declining phase of the solar cycle (2004–2006), the study shows that the IRI-2007 TEC underestimates the IRI-2007 TEC with the foF2 observation at the nighttime by about 5 TECU. The maximum differences are about 15 TECU during daytime and 5 TECU during nighttime. The overestimation is more evident at daytime than at nighttime. When compared in terms of the root-mean square error (RMSE), we find that the highest RMSE between GPS TEC and IRI 2007 TEC is 14.840 TECU at 1230 LT in 2004 and the lowest average between them is 1.318 TECU at 0630 LT in 2006. The noon bite-out phenomena are clearly seen in the IRI-2007 TEC with and without optional foF2 measurements, but not on the GPS TEC and IGS TEC. The IRI TEC with optional foF2 measurements gives the lowest RMSE values between IRI TEC predicted and TEC measurement. However, the TEC measurements (GPS TEC and IGS TEC) are more correct to use at Chumphon station.  相似文献   

11.
电离层总电子含量(TEC)不仅是分析电离层形态的关键参数之一,同时为导航及定位等空间应用系统消除电离层附加时延提供重要支撑。由于电离层TEC的时空变化特征,本文融合因果卷积和长短时记忆网络,以太阳活动指数F10.7、地磁活动指数Dst和电离层TEC历史数据作为特征输入,构建深度学习模型,实现提前24 h预报电离层TEC。进一步利用2005-2013年连续9年的CODE TEC数据,全面评估了模型在北京站(40°N,115°E)、武汉站(30.53°N,114.36°E)和海口站(20.02°N,110.38°E)的预报性能。结果显示不同太阳活动条件下三个站的TEC值与真实测量值的相关系数都大于0.87,均方根误差大都集中在0~1 TECU以内,且模型预报精度与纬度、太阳、地磁活动程度、季节变化相关。与仅由长短时记忆网络构成的预报模型相比,本实验模型均方根误差降低了15%,为电离层TEC预报模型的实际应用提供了参考。   相似文献   

12.
利用中国区域内五个GPS台站(一个台站处于日全食区域、四个台站处于日偏食区域)观测数据, 研究2009年7月22日日全食期间电离层总电子含量(TEC)的变化, 结果表明, 日全食期间, 电离层TEC值经历了下降和恢复的过程, 最小TEC相对于最大食偏的时间延迟约为1~10min; 台站测得最小TEC的星下点(IPP)越靠近日全食带TEC下降量越大, 在日食期间武汉站(114.35°E, 30.53°N) TEC相对于各参考日期的TEC, 其平均下降量最大, 达到4.58TECU.   相似文献   

13.
In this study, we use a great body of statistical data covering the entire 23rd solar cycle to cross test data of satellite altimeters, Global Ionosphere Maps and the International Reference Ionosphere models, IRI-2001 and IRI-2007. It is revealed that experimental TEC values of the satellite altimeters regularly exceed the model ones by ∼3 TECU (1 TECU = 1016 m−2). The best possible value of difference between TECs obtained from altimeter and GIM-map data significantly differs for different laboratories: the maximum for CODG data falls on 2.5 TECU, ESAG – 3 TECU, JPLG – 0 TECU, UPCG – 2 TECU. The dependence of experimental and model data root-mean-square deviation on the F10.7 index is shown to be nearly linear. IRI-2001 and IRI-2007 relative errors are characterized by considerable 11-year and annual variations. Given the geomagnetic planetary index Kp under 7, IRI-2001 and IRI-2007 reproduce TEC in the ionosphere with an accuracy of ∼30% relative to measurement data from satellite altimeters. The amplitude of absolute error variations resulting from the difference in ionization enhancement between the model and the real ionosphere during the morning solar terminator transit is ∼5 TECU.  相似文献   

14.
We investigated the ionospheric anomalies observed before the Tohoku earthquake, which occurred near the northeast coast of Honshu, Japan on 11 March, 2011. Based on data from a ground-based Global Positioning System (GPS) network on the Korean Peninsula, ionospheric anomalies were detected in the total electron content (TEC) during the daytime a few days before earthquake. Ionospheric TEC anomalies appeared on 5, 8 and 11 March. In particular, the ionospheric disturbances on 8 March evidenced a remarkable increase in TEC. The GPS TEC variation associated with the Tohoku earthquake was an increase of approximately 20 total electron content units (TECU), observed simultaneously in local and global TEC measurements. To investigate these pre-earthquake ionospheric anomalies, space weather conditions such as the solar activity index (F10.7) and geomagnetic activity indices (the Kp and Dst indices) were examined. We also created two-dimensional TEC maps to visual the spatial variations in the ionospheric anomalies preceding the earthquake.  相似文献   

15.
基于星载船舶自动识别系统(AIS),提出一种计算全球电离层电子总含量(TEC)的方法。通过在卫星上搭载两个相互垂直的线极化天线,测量AIS信号穿过电离层时的法拉第旋转角,再通过法拉第旋转角与TEC的关系估算TEC。基于天拓五号卫星的AIS数据进行了实验验证,并分析了硬件设备误差和观测参数误差对结果造成的影响。实验表明,本方法测量出的TEC值与基于全球定位系统(GPS)测量的TEC值差值平均为0.762 TECU,证明了此方法的可行性。与现有的TEC测量方法相比,该方法只需利用现有的AIS系统,无需部署地面站,可大幅提高数据更新速率。   相似文献   

16.
This work studies the sudden increases in total electron content of the ionosphere caused by the very intense solar flare on July 14, 2000. Total electron content (TEC) data observed from a Global Positioning System (GPS) network are used to calculate the flare-induced TEC increment, δTECf, and variation rate, dTECf/dt. It is found that both dTECf/dt and δTECf are closely related with the solar zenith angles. To explain the observation results, we derived a simple relationship between the partial derivative of the flare-induced TEC, ∂TECf/∂t, which is a good approximation for dTECf/dt, and the solar zenith angle χ, as well as the effective flare radiation flux If, according to the well-known Chapman theory of ionization. The derived formula predicted that ∂TECf/∂t is proportional to If and inverse proportional to Chapman function ch(χ). This theoretical prediction not only explains the correlation of dTECf/dt and δTECf with χ as shown in our TEC observation, but also gives a way to deduce If from TEC observation of GPS network. Thus, the present work shows that GPS observation is a powerful tool in the observation and investigation of solar flare effects on the ionosphere, i.e., the sudden ionospheric disturbances, which is a significant phenomenon of space weather.  相似文献   

17.
2009年6至7月华南地区电离层TEC扰动研究   总被引:1,自引:0,他引:1  
电离层TEC(Total Electron Content)扰动与多种扰动源相关联.2009年6至7月期间存在地震和日全食的扰动源.利用广州地区GPS监测网在2009年6至7月连续监测到的TEC数据,通过采用前15天数据的滑动窗口对数据进行处理,从时间序列和空间分布两方面分析了华南地区电离层TEC扰动特征.结果显示,2009年6至7月华南地区电离层TEC扰动和该时期发生的地震以及日全食事件可能有关联;2009年7月多个地震发生引起的电离层扰动特征为,震前出现的是正异常,发震当天或震后有可能是正异常,也有可能是负异常;7月22日日全食当天TEC扰动为正异常,推测该正异常是地磁活动、地震活动及日全食综合效应的结果.  相似文献   

18.
The HF Doppler technique, a method of measurement of Doppler frequency shift of ionospheric signal, is one of the well-known and widely used techniques of ionosphere research. It allows investigation of various disturbances in the ionosphere. There are different sources of disturbances in the ionosphere such as geomagnetic storms, solar flashes, meteorological effects and atmospheric waves. The HF Doppler technique allows us to find out the influence of earthquakes, explosions and other processes on the ionosphere, which occurs near the Earth. HF Doppler technique has high sensitivity to small frequency variations and high time resolution but interpretation of results is difficult. In this paper, we attempt to use GPS data for Doppler measurements interpretation. Modeling of Doppler frequency shift variations with use of TEC allows separation of ionosphere disturbances of medium scale.  相似文献   

19.
We examined performance of two empirical profile-based ionospheric models, namely IRI-2016 and NeQuick-2, in electron content (EC) and total electron content (TEC) representation for different seasons and levels of solar activity. We derived and analyzed EC estimates in several representative altitudinal intervals for the ionosphere and the plasmasphere from the COSMIC GPS radio occultation, ground-based GPS and Jason-2 joint altimeter/GPS observations. It allows us to estimate a quantitative impact of the ionospheric electron density profiles formulation in several altitudinal intervals and to examine the source of the model-data discrepancies of the EC specification from the bottom-side ionosphere towards the GPS orbit altitudes. The most pronounced model-data differences were found at the low latitude region as related to the equatorial ionization anomaly appearance. Both the IRI-2016 and NeQuick-2 models tend to overestimate the daytime ionospheric EC and TEC at low latitudes during all seasons of low solar activity. On the contrary, during high solar activity the model results underestimated the EC/TEC observations at low latitudes. We found that both models underestimated the EC for the topside ionosphere and plasmasphere regions for all levels of solar activity. For low solar activity, the underestimated EC from the topside ionosphere and plasmasphere can compensate the overestimation of the ionospheric EC and, consequently, can slightly decrease the resulted model overestimation of the ground-based TEC. For high solar activity, the underestimated EC from the topside ionosphere and plasmasphere leads to a strengthening of the model underestimation of the ground-based TEC values. We demonstrated that the major source of the model-data discrepancies in the EC/TEC domain comes from the topside ionosphere/plasmasphere system.  相似文献   

20.
To analyze midlatitude medium-scale travelling ionospheric disturbances (MSTIDs) over Kazan (55.5°N, 49°E), Russia, the sufficiently dense network of GNSS receivers (more than 150 ground-based stations) were used. For the first time, daytime MSTIDs in the form of their main signature (band structure) on high-resolution two-dimensional maps of the total electron content perturbation (TEC maps) are compared with ionosonde data with a high temporal resolution. For a pair of events, a relationship between southwestward TEC perturbations and evolution of F2 layer traces was established. So F2 peak frequency varied in antiphase to TEC perturbations. The ionograms show that during the movement of plasma depletion band (overhead ionosonde) the F2 peak frequency is the highest, and vice versa, for the plasma enhancement band, the F2 peak frequency is the lowest. One possible explanation may be a greater inclination of the radio beam from the vertical during the placement of a plasma enhancement band above the ionosonde, as evidenced by the absence of multiple reflections and the increased occurrence rate of additional cusp trace. Another possible explanation may be the redistribution of the electron content in the topside ionosphere with a small decrease in the F peak concentration of the layer with a small increase in TEC along the line-of-sight. Analysis of F2 peak frequency variation shows that observed peak-to-peak values of TEC perturbation equal to 0.4 and 1 TECU correspond to the values of ΔN/N equal to 13% and 28%. The need for further research is evident.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号