首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Impact craters are ubiquitous and well-studied structures of high geological relevance on the surfaces of the Earth’s Moon, the terrestrial planets, the asteroids and the satellites of the outer planets. Therefore, it is not surprising that crater detection algorithms (CDAs) are one of the most studied subjects of image processing and analysis in lunar and planetary science. In this paper we are proposing a Hybrid CDA: a modified DEM (digital elevation map) reconstruction method used as a step in an existing CDA based on Hough transform. The new Hybrid CDA consists of: (1) reconstruction of topography from optical images using a shape from shading approach; (2) utilization of the DEM-based CDA; (3) correction of brightness and contrast of optical images used in order to be more suitable for evaluation of detections. An additional result of this work is a new method for evaluation of topography reconstruction algorithms, using a DEM-based CDA and an earlier approach for evaluation of CDAs. The new Hybrid CDA was tested using two Chandrayaan-1 Moon Mineralogy Mapper (M3) images and two excerpts of the Lunar Reconnaissance Orbiter (LRO) Wide Angle Camera (WAC) global optical image mosaic. As a result, the number of craters inside these four regions increased considerably from 1754 (as available in the previous LU60645GT catalogue) to 19 396 craters (as available in the resulting new LU78287GT catalogue). This confirmed the practical applicability of the new Hybrid CDA, which can be used in order to considerably extend current crater catalogues.  相似文献   

2.
In a large majority of lunar and planetary surface images, impact craters are the most abundant geological features. Therefore, it is not surprising that crater detection algorithms (CDAs) are one of the most studied subjects of image processing and analysis in lunar and planetary science. In this work we are proposing an Integrated CDA, consisting of: (1) utilization of DEM (digital elevation map)-based CDA; (2) utilization of an optical-based CDA; (3) re-projection of used datasets and crater coordinates from normal to rotated view and back; (4) correction of the brightness and contrast of a used optical image; and (5) tile generation for the optical-based CDA and an assembling of results with an elimination of multiple detections, in combination with a pyramid approach down to the resolution of the available DEM image; and (6) a final integration of the results of DEM-based and optical-based CDAs, including a removal of duplicates. The proposed CDA is applied to one specific asteroid-like body, the small Martian moon Phobos. The experimental evaluation of the proposed CDA is done by a manual verification of crater-candidates and a search for uncatalogued craters. The evaluation has shown that the proposed CDA was used successfully for cataloging Phobos craters. The major result of this paper is the PH9224GT – currently the most complete global catalogue of the 9224 Phobos craters. The possible applications of the new catalogue are: (1) age estimations for any selected location; and (2) comparison/evaluation of the different chronology and production functions for Phobos. This confirms the practical applicability of the new Integrated CDA – an additional result of this paper, which can be used in order to considerably extend the current crater catalogues.  相似文献   

3.
Counting craters is a paramount tool of planetary analysis because it provides relative dating of planetary surfaces. Dating surfaces with high spatial resolution requires counting a very large number of small, sub-kilometer size craters. Exhaustive manual surveys of such craters over extensive regions are impractical, sparking interest in designing crater detection algorithms (CDAs). As a part of our effort to design a CDA, which is robust and practical for planetary research analysis, we propose a crater detection approach that utilizes both shape and texture features to identify efficiently sub-kilometer craters in high resolution panchromatic images. First, a mathematical morphology-based shape analysis is used to identify regions in an image that may contain craters; only those regions - crater candidates - are the subject of further processing. Second, image texture features in combination with the boosting ensemble supervised learning algorithm are used to accurately classify previously identified candidates into craters and non-craters. The design of the proposed CDA is described and its performance is evaluated using a high resolution image of Mars for which sub-kilometer craters have been manually identified. The overall detection rate of the proposed CDA is 81%, the branching factor is 0.14, and the overall quality factor is 72%. This performance is a significant improvement over the previous CDA based exclusively on the shape features. The combination of performance level and computational efficiency offered by this CDA makes it attractive for practical application.  相似文献   

4.
利用数字高程模型自动检测火星表面陨石坑   总被引:1,自引:1,他引:0       下载免费PDF全文
为了克服利用影像识别陨石坑的诸多限制因素,利用"火星全球勘探者"(MGS)火星激光高度计(MOLA)得到的火星三维DEM数据,转换获得地形曲率,然后利用设定阈值将曲率图转换为二值图像,结合图像分割floodin算法可以得到待检测陨石坑,最后利用Hough变换可以检测出陨石坑。其成功率达到73.4%,可以有效地从DEM中识别陨石坑。利用DEM识别陨石坑的方法可以识别更多新的陨石坑,为现存的陨石坑目录提供新的数据信息。  相似文献   

5.
席莎  邵巍 《深空探测学报》2016,3(4):384-388
针对星体表面的陨石坑可用于探测器的自主导航、障碍识别等任务,提出一种基于多尺度边缘提取的陨石坑检测算法。该算法首先利用高斯金字塔得到不同尺度的陨石坑图像;其次,针对不同尺度的陨石坑图像,利用EDPF边缘提取算法对陨石坑进行边缘提取,并连接关键边缘像素点为直线段来近似表示图像边缘;然后将具有相同偏转方向的边缘直线段连接成圆弧,并将有相似半径和中心的圆弧拟合成候选圆和椭圆;最后对候选圆、椭圆进行验证。该算法的优点在于,能够准确地检测出陨石坑,有较高的检测率,且对存在较多陨石坑的图像有较好的检测结果。  相似文献   

6.
Impact craters are among the most noticeable geomorphological features on the planetary surface and yield significant information about terrain evolution and the history of the solar system. Thus, the recognition of impact craters is an important branch of modern planetary studies. Aiming at addressing problems associated with the insufficient and inaccurate detection of lunar impact craters, a decision fusion method within the Bayesian network (BN) framework is developed in this paper to handle multi-source information from both optical images and associated digital elevation model (DEM) data. First, we implement the edge-based method for efficiently searching crater candidates which are the image patches that can potentially contain impact craters. Secondly, the multi-source representations of an impact crater derived from both optical images and DEM data are proposed and constructed to quantitatively describe the two-dimensional (2D) and three-dimensional (3D) morphology, consisting of Histogram of Oriented Gradient (HOG), Histogram of Multi-scale Slope (HMS) and Histogram of Multi-scale Aspect (HMA). Finally, a BN-based framework integrates the multi-source representations of impact craters, which can provide reductant and complementary information, for distinguishing craters from non-craters. To evaluate the effectiveness and robustness of the proposed method, experiments were conducted on three lunar scenes using both orthoimages from the Lunar Reconnaissance Orbiter (LRO) and DEM data acquired by the Lunar Orbiter Laser Altimeter (LOLA). Experimental results demonstrate that integrating optical images with DEM data significantly decreases the number of false positives compared with using optical images alone, with F1-score of 84.8% on average. Moreover, compared with other existing fusion methods, our proposed method was quite advantageous especially for the detection of small-scale craters with diameters less than 1000 m.  相似文献   

7.
陨石坑是天体表面最为显著的地形特征,传统陨石坑识别方法主要是对小型陨石坑正负样本的二分类问题研究,且效率和精度均不高。以星体宏观视角下的大型陨石坑作为研究对象,结合图像处理和神经网络等方面的知识,创建了来自不同数据源的陨石坑样本数据库,研究了数据源对网络模型泛化能力的影响,提出了一种效率更高的陨石坑多分类识别方法。在非极大值抑制(NMS)算法基础上,提出了一种精度更高的陨石坑检测算法。经过参数优化和实验验证,构建的基于深度学习的多尺度多分类陨石坑自动识别网络框架取得了较高的准确率,在同源验证集上识别率可达0.985,在异源验证集上识别率可达0.863,并且有效改善了目标检测时检测框冗余及误检测的问题。   相似文献   

8.
Craters are distinctive features on the surfaces of most terrestrial planets. Craters reveal the relative ages of surface units and provide information on surface geology. Extracting craters is one of the fundamental tasks in planetary research. Although many automated crater detection algorithms have been developed to exact craters from image or topographic data, most of them are applicable only in particular regions, and only a few can be widely used, especially in complex surface settings. In this study, we present a machine learning approach to crater detection from topographic data. This approach includes two steps: detecting square regions which contain one crater with the use of a boosting algorithm and delineating the rims of the crater in each square region by local terrain analysis and circular Hough transform. A new variant of Haar-like features (scaled Haar-like features) is proposed and combined with traditional Haar-like features and local binary pattern features to enhance the performance of the classifier. Experimental results with the use of Mars topographic data demonstrate that the developed approach can significantly decrease the false positive detection rate while maintaining a relatively high true positive detection rate even in challenging sites.  相似文献   

9.
Impact cratering as a geologic process on the terrestrial planets is addressed. The crater densities on the Earth and Moon form the basis for a standard flux-time curve, which can be used to date unsampled planetary surfaces and constrain the temporal history of endogenic geologic processes. The attached uncertainties and the shape of the flux curve (a rapid exponential decay for the period 4.6 – 4.0 by, followed by the establishment of a constant fluid by 3.5 – 3.0 by which continues more or less to the present) are such that only very old (3.8 by) and very young ( 1.0 by) surfaces can be dated with some confidence. Dating of intermediate-aged surfaces is more imprecise; a problem which is most significant for the geologic history of Mars.

The cratering mechanics of simple craters are fairly well understood. A transient cavity of roughly parabolic cross-section results from the combined excavation and displacement of the target rocks by the cratering flow-field, which can be approximated by the Z-model derived from shallow-buried explosive events. The walls of the transient crater are unstable and slump inwards, resulting in a final bowl-shaped crater partially filled by breccia. The formation process of larger, shallow complex structures is less well understood. Recent models favor the complete collapse of the initial cavity, with the dynamic uplift of the excavated cavity floor. Regardless of the driving force for uplift, yield strength of the target rocks must be drastically reduced during cavity modification by an, as yet, imprecisely known process.

The formation of large impact basins had a profound effect on planetary evolution. They define the basic tectonic and stratigraphic framework of the Moon and their secondary effects lasted for 108 y. The evidence is less compelling from other planets, but a general feature appears to be the concentration of later endogenic activity in and around basins. On Earth, it is possible that basin-formation contributed to the establishment of the dichotomy between proto-continental and proto-oceanic crusts. The effects of impact continue into recent geologic history and may be linked to major biological changes on Earth, such as at the Cretaceous-Tertiary boundary.  相似文献   


10.
将辐射源威胁评估作为多属性决策问题进行处理时,侦察方无法获取敌方辐射源的所有信息,而逼近理想解排序(TOPSIS)法在处理“贫信息”问题时很难得到完美结果,而且其仅仅考虑指标之间的欧氏距离,无法反映各指标间的关联性。针对TOPSIS法存在的问题,将灰色关联分析(GRA)和TOPSIS法结合,提出一种基于博弈论的GRA-TOPSIS辐射源威胁评估模型。在构建辐射源目标综合评价指标体系的基础上,运用博弈论(GT)思想将区间层次分析法(IAHP)所得主观权重和信息熵所得客观权重进行组合得到综合权重,能够较大程度减少单独赋权带来的信息损失。在基于GRA-TOPSIS辐射源威胁评估模型下,构建了关于战场态势的决策信息系统,通过与传统TOPSIS法进行对比仿真,验证了所提方法的有效性,有助于对辐射源进行更精细准确地排序。   相似文献   

11.
Polygonal Impact Craters (PICs), having a distinct polygonal rim geometry, are common on terrestrial planets, their natural satellites such as Earth’s Moon and the asteroids. The straight segments of PIC-rims are arguably subparallel or oblique to existing fracture/fault planes in their vicinity, and such pre-existing structural weak planes are considered responsible for the shape of the PICs. The Mare Fecunditatis, a lunar maria, preserves mappable PICs as well as different geomorphic features like wrinkle ridges, grabens and pit crater chains which owe their origin to either compressional or extensional faulting. To understand the structural control, if any, on the PIC-rim geometry in Mare Fecunditatis, PICs, both simple and complex, and the deformational features are mapped, superposition relations between them are observed and trends are compared. The comparison between frequency of rim segment trends of the two types of PICs with wrinkle ridges, grabens and pit crater chains, and also statistical correlation between them, interestingly indicate that the wrinkle ridges and grabens are found to have negligible or no influence on the rim geometry of the PICs. Wrinkle ridges, known to be a group of the Mare Fecunditatis' oldest deformation features, are older than most of the preserved craters and are likely to have had control over the PIC shape. However, lack of correlation between the trends of wrinkle ridges and PIC rims indicates that most of the craters were formed after the fractures beneath the old wrinkle ridges ceased to act as mechanical discontinuity planes due to possible induration caused by fracture-filling through concomitant and later magma injection. The PICs dispersed throughout the maria could have avoided the influence of the grabens, the majority of which are located near the margin of the maria. Pit crater chains with possible deep roots and still/recently continued dike activities, were the only available weak planes which could influence the PIC rim shapes.  相似文献   

12.
选择合适的软着陆区域及规划合理的巡航路线是月球探测的基础工作。以位于月球背面南极—艾肯(South Pole-Aitken,SPA)盆地内的冯·卡门(Von Kármán)撞击坑作为研究区域,综合使用多因子分析评估了月球探测的着陆区域和巡航路线。评价体系主要包括能表征着陆安全性的撞击坑的密度、撞击坑的影响区域、整个区域的平整情况、部分区域的平整情况等因子和体现科学探索意义的区域垂直结构、岩石属性和(FeO+TiO2)含量等因子,其中科学探索的评估分析是在安全可行性的基础上进行的。结果表明:在多因子叠加分析的基础上可选择出A、B及C 3个着陆区,并通过科学研究因子分析出路线2及路线3为合适的巡航路线。本研究为月球探测器着陆和巡航路线的规划提供了科学依据,为后续的月球探测工作提供了技术支持。  相似文献   

13.
Spacecraft measurements of the plasma populations and magnetic fields near Jupiter and Saturn have revealed that large magnetospheres surround both planets. Magnetic field measurements have indicated closed field line topologies in the dayside magnetospheres of both planets while plasma instruments have shown these regions to be populated by both hot and cold plasma components convected azimuthally in the sense of planetary rotation. By using published data from the Voyager Plasma Science (PLS), Low Energy Charged Particle (LECP), and Magnetometer (MAG) instruments, it is possible to investigate the validity of the time stationary MHD momentum equation in the middle magnetospheres of Jupiter and Saturn. At Saturn, the hot plasma population is negligible in the dynamic sense and the centrifugal force of the cold rotating plasma appears to balance the Lorentz force. At Jupiter, the centrifugal force balances ~25% of the Lorentz force. The remaining inward Lorentz force is balanced by pressure gradients in the hot, high-β plasma of the Jovian magnetodisk.  相似文献   

14.
提出了一种有大气地外行星悬飞探测方式,该探测方式是利用被探测天体存在大气的环境特点,实现探测器在被测天体的"飞行"机动,克服目前已有的环绕探测、着陆探测、巡视探测和采样返回探测四类无人深空探测方式受地形、地貌约束无法实现大范围机动就位探测的不足。提出了悬飞探测器的典型任务工作模式设想,建立了悬飞探测器的六自由度动力学模型,并针对太阳系内典型的有大气行星环境(火星和土卫六)特点,给出了悬飞探测器的动力学特性并开展了仿真分析。在此基础上,首次提出了悬飞探测器的可行性约束系数,为悬飞探测器在深空探测的可行性研究提供了理论依据。  相似文献   

15.
We review the current status of the development of Gamma-Ray Spectrometer (GRS) for the Lunar mission SELENE. The GRS instrument will measure gamma-rays in the energy range from 100 keV to 9 MeV. The instrument is a high-purity Ge detector surrounded by BGO and plastic scintillators which are operated as an anticoincidence shield, and is cooled by a Stirling cycle cryocooler. The primary objective is to provide global maps of the lunar composition. Measurements are anticipated for Fe, Ti, U, Th, K, Si, Mg, Al, O, Ca and Na over the entire lunar surface. The abundance of water ice in the permanently shaded craters at both the lunar poles will be measured with this instrument.  相似文献   

16.
The basic photochemical processes in the upper atmospheres and ionospheres of the various bodies in our solar system (planets, moons and comets) are similar. However, there are many different factors (e.g. gas composition, energy input, gravity) which control/change the relative importance of these controlling processes. The photo-chemistry of the inner planets is reasonably well understood at this time, thus there is good agreement between model calculations and most of the observational data base. The extremely limited information that we have available on the ionospheres of the outer planets leads to significant uncertainties about some of the controlling processes. Some important questions (e.g. Is the charge exchange process H+ + H2(v≥4) → H2+ + H important? Is water vapor influx from the rings important?) remain unanswered at this time. In cometary atmospheres the freshly evaporated parent molecules are rapidly photodissociated and photoionized, therefore most of the chemical kinetics of cometary ionospheres involve these rapidly moving and highly reactive ions and radicals.  相似文献   

17.
Photochemistry of giant planets and their satellites is characterized by numerous reactions involving a lot of chemical species. In the present paper, chemical systems are modeled by signal flow graphs. Such a technique evaluates the transmission of any input into the system (solar flux, electrons ... ) and gives access to the identification of the most important mechanisms in the chemical system. This method is applied to the production of hydrocarbons in the atmospheres of giant planets. In particular, the production of C2H6 in the atmosphere of Neptune from the photodissociation of CH4 is investigated. Different pathways of dissociation of CH4 are possible from L alpha radiation. A chemical system containing 14 species and 30 reactions including these different pathways of dissociation is integrated. The main mechanism of production of C2H6 is identified and evaluated for each model of dissociation. The importance of various reaction pathways as a function of time is presented.  相似文献   

18.
The intensity of the resonantly scattered Ly-α line of the gian planets depends on the scattering column length of atomic hydrogen above the methane layer and on the incident solar flux. We have obtained measurements of the Ly-α brightness of Jupiter and Saturn on December 19, 1979, with a time difference of 111 minutes, which is only slightly longer than the additional travel time for solar photons scattered at Saturn compared to those from Jupiter. This observational technique eliminates two major uncertainties — the use of different instruments and solar variability — affecting previous determinations of the relative brightness of the planets. The measured ratio of the brightness of the subsolar points is 3.0 ± 0.4 which agrees well with the ratio of the incident solar flux of 3.4. This implies approximately equal scattering column lengths of H on both planets.  相似文献   

19.
火星表层矿物识别是了解火星大气环境变化、表层地质环境的关键因素。通过确定火星表层矿物,分析矿物特性,了解火星的环境状态、地质演化以及火星的未来适居性。火星勘测轨道器(Mars reconnaissance orbiter,MRO)上搭载的紧凑型侦察成像仪(compact reconnaissance imaging spectrometer for Mars,CRISM)是针对火星矿物探测的最新的高光谱成像仪,以很高的光谱分辨率覆盖可见光至近红外波段,为火星表面的矿物分布及区域填图提供了可能。通过光谱匹配及计算CRISM光谱参数综合产品,分析了火星Jezero以及Holden撞击坑内的矿物成分及其演化。Jezero与Holden因其复杂而关键的地质特征,被列为火星2020登陆任务的备选登陆点。对这两个地点的矿物探测与填图分析不仅可进一步分析火星典型地质特征以及演化,而且还可以为未来的火星登陆点分析提供现实意义。在研究区域已检测到与水成蚀变相关的含水硅酸盐类以及碳酸盐类与含水硫酸盐类。水合矿物增加了这些区域曾经含水的可能性,且矿物的多样性表明研究区地质环境经历了不同的变化,其中Jezero地区不同于火星的绝大多数地区从中性环境到酸性环境的演化,有可能经历了从中性环境到碱性环境的演化。  相似文献   

20.
小行星探测科学目标进展与展望   总被引:1,自引:0,他引:1       下载免费PDF全文
由于较好地保留了太阳系早期形成和演化历史的遗迹,小行星,尤其是近地小行星,已成为国际深空探测领域的研究热点。介绍了小行星的定义、分类和主要探测方式,指出目前小行星探测已进入空间探测的新时代;总结了国际小行星探测的现状,包括已实施和正在实施的小行星探测任务的科学目标、科学载荷配置,以及获取的主要科学数据等;探讨了未来小行星探测的发展趋势和主要科学问题,并对我国未来自主小行星探测任务科学目标的制定进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号