首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Education and public outreach (EPO) is one of the four components of the International Heliophysical Year (IHY). It is fundamental in achieving one of IHY’s primary objectives which is to “demonstrate the beauty, relevance and significance of Space and Earth science to the world.”  相似文献   

2.
The methods of today’s predictions of space weather and effects are so much more advanced and yesterday’s statistical methods are now replaced by integrated knowledge-based neuro-computing models and MHD methods. Within the ESA Space Weather Programme Study a real-time forecast service has been developed for space weather and effects. This prototype is now being implemented for specific users. Today’s applications are not only so many more but also so much more advanced and user-oriented. A scientist needs real-time predictions of a global index as input for an MHD model calculating the radiation dose for EVAs. A power company system operator needs a prediction of the local value of a geomagnetically induced current. A science tourist needs to know whether or not aurora will occur. Soon we might even be able to predict the tropospheric climate changes and weather caused by the space weather.  相似文献   

3.
The International Heliophysical Year (IHY) aims to advance our understanding of the fundamental processes that govern the Sun, Earth, and heliosphere. The IHY Education and Outreach Program is dedicated to inspiring the next generation of space and Earth scientists as well as spreading the knowledge, beauty, and relevance of our solar system to the people of the world. In our Space Weather Monitor project we deploy a global network of sensors to high schools and universities to provide quantitative diagnostics of solar-induced ionospheric disturbances, thunderstorm intensity, and magnetospheric activity. We bring real scientific instruments and data in a cost-effective way to students throughout the world. Instruments meet the objectives of being sensitive enough to produce research-quality data, yet inexpensive enough for placement in high schools and universities. The instruments and data have been shown to be appropriate to, and usable by, high school age and early university students. Data contributed to the Stanford data center is openly shared and partnerships between groups in different nations develop naturally. Students and teachers have direct access to scientific expertise.  相似文献   

4.
The effects of the energetic phenomena of the Sun, flares and coronal mass ejections (CMEs) on the Earth’s ionosphere–magnetosphere, through the solar wind, are the sources of the geomagnetic disturbances and storms collectively known as Space Weather. The research on the influence of Space Weather on biological and physiological systems is open. In this work we study the Space Weather   impact on Acute Coronary Syndromes (ACS) distinguishing between ST-segment elevation acute coronary syndromes (STE–ACS) and non-ST-segment elevation acute coronary syndromes (NSTE–ACS) cases. We compare detailed patient records from the 2nd Cardiologic Department of the General Hospital of Nicaea (Piraeus, Greece) with characteristics of geomagnetic storms (DSTDST), solar wind speed and statistics of flares and CMEs which cover the entire solar cycle 23 (1997–2007). Our results indicate a relationship of ACS to helio-geomagnetic activity as the maximum of the ACS cases follows closely the maximum of the solar cycle. Furthermore, within very active periods, the ratio NSTE–ACS to STE–ACS, which is almost constant during periods of low to medium activity, changes favouring the NSTE–ACS. Most of the ACS cases exhibit a high degree of association with the recovery phase of the geomagnetic storms; a smaller, yet significant, part was found associated with periods of fast solar wind without a storm.  相似文献   

5.
Status of solar sail technology within NASA   总被引:2,自引:0,他引:2  
In the early 2000s, NASA made substantial progress in the development of solar sail propulsion systems for use in robotic science and exploration of the solar system. Two different 20-m solar sail systems were produced. NASA has successfully completed functional vacuum testing in their Glenn Research Center’s Space Power Facility at Plum Brook Station, Ohio. The sails were designed and developed by Alliant Techsystems Space Systems and L’Garde, respectively. The sail systems consist of a central structure with four deployable booms that support each sail. These sail designs are robust enough for deployment in a one-atmosphere, one-gravity environment and are scalable to much larger solar sails – perhaps as large as 150 m on a side. Computation modeling and analytical simulations were performed in order to assess the scalability of the technology to the larger sizes that are required to implement the first generation of missions using solar sails. Furthermore, life and space environmental effects testing of sail and component materials was also conducted.  相似文献   

6.
The Chinese Meridian Space Weather Monitoring Project (Meridian Project) is a ground-based geospace monitoring chain in China. It consists of 15 ground-based observation stations located roughly along 120°E longitude and 30°N latitude. In recent two years, using data from the Meridian Project, significant progress has been made in space weather and space physics research. These advances are mainly in four aspects:regional characteristics of space environment above China or along 120°E meridian line, coupling between space spheres at different heights and different physical processes, space weather disturbance and its propagation along the meridian chain, and space weather effects on ground technical facilities.   相似文献   

7.
The International Heliophysical Year (IHY) is an international program of scientific research to advance our understanding of the physical processes that govern the Sun, Earth and heliosphere. It has a strong educational component, linking research and education. Here, we describe the outreach activities during the 2006 total solar eclipse sponsored by IHY.  相似文献   

8.
KuaFu Mission     
The KuaFu mission-Space Storms, Aurora and Space Weather Explorer-is an "L1+Polar" triple satellite project composed of three spacecraft: KuaFu-A will be located at L1 and have instruments to observe solar EUV and FUV emissions, and white-light Coronal Mass Ejections (CMEs), and to measure radio waves, the local plasma and magnetic field,and high-energy particles. KuaFuB1 and KuaFu- B2 will bein polar orbits chosen to facilitate continuous 24 hours a day observation of the north polar Aurora Oval. The KuaFu mission is designed to observe the complete chain of disturbances from the solar atmosphere to geospace, including solar flares, CMEs, interplanetary clouds, shock waves, and their geo-effects, such as magnetospheric sub-storms and magnetic storms, and auroral activities. The mission may start at the next solar maximum (launch in about 2012), and with an initial mission lifetime of two to three years. KuaFu data will be used for the scientific study of space weather phenomena, and will be used for space weather monitoring and forecast purposes. The overall mission design, instrument complement, and incorporation of recent technologies will target new fundamental science, advance our understanding of the physical processes underlying space weather, and raise the standard of end-to-end monitoring of the Sun-Earth system.  相似文献   

9.
Space weather phenomena can effect many areas of commercial airline operations including avionics, communications and GPS navigation systems. Of particular importance at present is the recently introduced EU legislation requiring the monitoring of aircrew radiation exposure, including any variations at aircraft altitudes due to solar activity. With the introduction of new ultra-long-haul “over-the-pole” routes, “more-electric” aircraft in the future, and the increasing use of satellites in the operation, the need for a better understanding of the space weather impacts on future airline operations becomes all the more compelling. This paper will present the various space weather effects, some provisional results of an ongoing 3-year study to monitor cosmic radiation in aircraft, and conclude by summarising some of the identified key operational issues, which must be addressed, with the help of the science community, if the airlines want to benefit from the availability of space weather services.  相似文献   

10.
In the past two years, China's space life science has made great progress. Space biomedical and life science programs have carried out ground-based research for the first batch of projects, and are preparing to carry out space-based experiments along with the construction of China's space station. And space life science payload of the space station completed the development of positive samples. Thus, with the development of lunar exploration and Mars exploration projects, astrobiology research has also made a lot of basic achievements. On the basis of summarizing the development of space life science in China, this paper mainly introduces the important progress of payload technology and life science research.   相似文献   

11.
Active shielding for long duration interplanetary manned missions   总被引:1,自引:0,他引:1  
For long duration interplanetary manned missions the protection of astronauts from cosmic radiation is an unavoidable problem that has been considered by many space agencies. In Europe, during 2002–2004, the European Space Agency supported two research programs on this thematic: one was the constitution of a dedicated study group (on the thematic ‘Shielding from cosmic radiation for interplanetary missions: active and passive methods’) in the framework of the ‘life and physical sciences’ report, and the other an industrial study concerning the ‘radiation exposure and mission strategies for interplanetary manned missions to Moon and Mars’. Both programs concluded that, outside the protection of the magnetosphere and in the presence of the most intense and energetic solar events, the protection cannot rely solely on the mechanical structures of the spacecraft, but a temporary shelter must be provided. Because of the limited mass budget, the shelter should be based on the use of superconducting magnetic systems. For long duration missions the astronauts must be protected from the much more energetic galactic cosmic rays during the whole mission period. This requires the protection of a large habitat where they could live and work, and not the temporary protection of a small volume shelter. With passive absorbers unable to play any significant role, the use of active shielding is mandatory. The possibilities offered by superconducting magnets are discussed, and recommendations are made about the needed R&D. The technical developments that have occurred in the meanwhile and the evolving panorama of possible near future interplanetary missions, require revising the pioneering studies of the last decades and the adoption of a strategy that considers long lasting human permanence in ‘deep’ space, moreover not only for a relatively small number of dedicated astronauts but also for citizens conducting there ‘normal’ activities.  相似文献   

12.
Korea is planning a series of lunar space programs in 2020 starting with a lunar orbiter and a lander with a rover. Compared to other countries, Korea has a relatively brief history in space and planetary sciences. With the expected Korean missions on the near-term horizon and the relatively few Korean planetary scientists, Korea Institute of Geoscience and Mineral Resources (KIGAM) has established a new planetary research group focusing on development of prospective lunar instruments, analysis of the publicly available planetary data of the Moon, organizing nationwide planetary workshops, and initiating planetary educational programs with academic institutions. Korea has also initiated its own rocket development program, which could acquire a rocket-launch capability toward the Korean lunar mission. For the prospective Korea’s lunar science program, feasibility studies for some candidate science payloads have been started since 2010 for an orbiter and a lander. The concept design of each candidate instrument has been accomplished in 2012. It is expected that the development of science payloads may start by 2014 as Phase A. Not only developing hardware required for the lunar mission but also educational activities for young students are high priorities for Korea. The new plan of the Korean lunar mission can be successfully accomplished with international cooperative outreach programs in conjunction with internationally accessible planetary data system (PDS). This paper introduces the KIGAM’s international cooperative planetary research and educational programs and also summarizes other nationwide new developments for Korean lunar research projects at Kyung Hee University and Hanyang University.  相似文献   

13.
On 11 January 2007, the People’s Republic of China conducted a successful anti-satellite test against one of their defunct polar-orbiting weather satellites. The target satellite, called Fengyun-1C, had a mass of 880 kg and was orbiting at an altitude of about 863 km when the collision occurred. Struck by a direct-ascent interceptor at a speed of 9.36 km/s, the satellite disintegrated, spreading the cataloged fragments between 200 and 4000 km, with the highest concentration near the breakup height. By the end of April 2008, 2377 pieces of debris, including the original payload remnant, had officially been cataloged by the US Space Surveillance Network. Of these, nearly 1% had reentered the Earth’s atmosphere. This deliberate act is the largest debris-generating event on record, and its consequences will adversely affect circumterrestrial space for many years.  相似文献   

14.
In recent years there has been considerable research in undergraduate physics education regarding the application to classroom instruction of techniques that are generally referred to as active engagement techniques. However, in very few cases have such pedagogical strategies been applied to graduate-level instruction. In this paper we describe an innovative application of a variety of active engagement techniques at the graduate summer school conducted by the Center for Integrated Space Weather Modeling, a Science and Technology Center funded by the National Science Foundation. We believe that the model presented here can serve as a valuable guide to other group contemplating space physics education at all levels, as well as graduate education generally.  相似文献   

15.
16.
Activities of space materials science research in China have been continuously supported by two main national programs. One is the China Space Station (CSS) program since 1992, and the other is the Strategic Priority Program (SPP) on Space Science since 2011. In CSS plan in 2019, eleven space materials science experimental projects were officially approved for execution during the construction of the space station. In the SPP Phase II launched in 2018, seven pre-research projects are deployed as the first batch in 2018, and one concept study project in 2019. These pre-research projects will be cultivated as candidates for future selection as space experiment projects on the recovery of scientific experimental satellites in the future. A new apparatus of electrostatic levitation system for ground-based research of space materials science and rapid solidification research has been developed under the support of the National Natural Science Foundation of China. In order to promote domestic academic activities and to enhance the advancement of space materials science in China, the Space Materials Science and Technology Division belong to the Chinese Materials Research Society was established in 2019. We also organized scientists to write five review papers on space materials science as a special topic published in the journal Scientia Sinica to provide valuable scientific and technical references for Chinese researchers.   相似文献   

17.
Optical signatures of ionospheric disturbances exist at all latitudes on Earth—the most well known case being visible aurora at high latitudes. Sub-visual emissions occur equatorward of the auroral zones that also indicate periods and locations of severe Space Weather effects. These fall into three magnetic latitude domains in each hemisphere: (1) sub-auroral latitudes ~40–60°, (2) mid-latitudes (20–40°) and (3) equatorial-to-low latitudes (0–20°).Boston University has established a network of all-sky-imagers (ASIs) with sites at opposite ends of the same geomagnetic field lines in each hemisphere—called geomagnetic conjugate points. Our ASIs are autonomous instruments that operate in mini-observatories situated at four conjugate pairs in North and South America, plus one pair linking Europe and South Africa. In this paper, we describe instrument design, data-taking protocols, data transfer and archiving issues, image processing, science objectives and early results for each latitude domain. This unique capability addresses how a single source of disturbance is transformed into similar or different effects based on the unique “receptor” conditions (seasonal effects) found in each hemisphere. Applying optical conjugate point observations to Space Weather problems offers a new diagnostic approach for understanding the global system response functions operating in the Earth’s upper atmosphere.  相似文献   

18.
Space weather is driven and modulated by the activity in the Sun. Space weather events have the potential to inflict critical damage to space systems. Nowadays, space assets are essential in our basic needs, such as communications, cell phone networks, navigation systems, television and internet. Hence, understanding space weather dynamics and its effects on spacecraft is crucial for satellites engineers and satellite operators, in order to prevent and mitigate its impacts.In the last decade our Sun has erupted several times causing dozens of space weather events. Some of these led to satellite malfunctions and outages lasting from mere hours, up to days and weeks. This research is focused on two different space weather events, March 7–8, 2012, and September 6–10, 2017, that occurred during the last ten years and caused satellite anomalies that are related to an increase in the single event upsets rate. Single event upset is a bit flip in a memory device due to high energy particle interaction with the device sensitive volume. During these two periods, Eros B, a low Earth orbiting polar satellite detected an increased rate of single event upsets on two of its processing computers when the high energy proton flux was elevated. On both occasions X-class flares were detected, and the increased single event upsets count rate in Eros B took place only after the 100 MeV protons flux was three orders of magnitude above the background levels. In this research, Israeli satellite anomalies that were detected are first demonstrated.  相似文献   

19.
随着科技的发展,空间天气对电力系统、通信导航系统和航天资产等遍布全球的技术基础设施的影响越来越深.需要加强对空间天气事件过程的理解,提升空间天气的预报能力,优化基础设施设计,从而减缓空间天气对社会造成的影响.基于这些需求,国际空间研究委员会(COSPAR)联合国际与日共存计划(ILWS)共同成立专家组,研究制定了全球2015-2025空间天气发展路线图.本文对该路线图进行介绍和解读,讨论该路线图对中国空间天气发展的启示.  相似文献   

20.
Future of Space Astronomy: A global Road Map for the next decades   总被引:1,自引:0,他引:1  
The use of space techniques continues to play a key role in the advance of astrophysics by providing access to the entire electromagnetic spectrum from radio to high energy γ rays. The increasing size, complexity and cost of large space observatories places a growing emphasis on international collaboration. Furthermore, combining existing and future datasets from space and “ground based” observatories is an emerging mode of powerful and relatively inexpensive research to address problems that can only be tackled by the application of large multi-wavelength observations. While the present set of astronomical facilities is impressive and covers the entire electromagnetic spectrum, with complementary space and “ground based” telescopes, the situation in the next 10–20 years is of critical concern. The James Webb Space Telescope (JWST), to be launched not earlier than 2018, is the only approved future major space astronomy mission. Other major highly recommended space astronomy missions, such as the Wide-field Infrared Survey Telescope (WFIRST), the International X-ray Observatory (IXO), Large Interferometer Space Antenna (LISA) and the Space Infrared Telescope for Cosmology and Astrophysics (SPICA), have yet to be approved for development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号