首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Cryosat-2 was designed for its primary scientific objectives, i.e. for cryosphere science. As far as oceanography is concerned, various mission design choices make it less accurate than missions designed to comply with ocean surface topography requirements such as Jason-2 or ENVISAT. Cryosat-2-specific errors are equivalent to more than 50% of the sea surface height variability over 40% of the oceans. Cryosat-2’s sampling pattern is also suboptimal for mesoscale observation because the satellite tracks from any consecutive period of 2 to 20 days (e.g. the most recent and most valuable data for near real time mesoscale observation) are aggregated in 500 km wide bands which are interleaved with 500 km wide observation gaps.  相似文献   

2.
This paper presents improvements of a method (Stum et al., 2011) aimed at computing the water vapor path delay correction of altimeter sea surface height, using total precipitable water measurements from scanning microwave radiometers. The main interest of this improved method is for the Cryosat-2 mission over the ocean. Focus is made on the applicability of the method in near real time. An experiment to produce an operational path delay correction for Jason-2 and Cryosat-2 Interim Geophysical Data Records (IGDR) has been set up. Results confirm that the new correction, although less accurate than the one attainable with an embarked radiometer, improves the Cryosat-2 sea surface height accuracy.  相似文献   

3.
In recent years non-tidal Time Varying Gravity (TVG) has emerged as the most important contributor in the error budget of Precision Orbit Determination (POD) solutions for altimeter satellites’ orbits. The Gravity Recovery And Climate Experiment (GRACE) mission has provided POD analysts with static and time-varying gravity models that are very accurate over the 2002–2012 time interval, but whose linear rates cannot be safely extrapolated before and after the GRACE lifespan. One such model based on a combination of data from GRACE and Lageos from 2002–2010, is used in the dynamic POD solutions developed for the Geophysical Data Records (GDRs) of the Jason series of altimeter missions and the equivalent products from lower altitude missions such as Envisat, Cryosat-2, and HY-2A. In order to accommodate long-term time-variable gravity variations not included in the background geopotential model, we assess the feasibility of using DORIS data to observe local mass variations using point mascons. In particular, we show that the point-mascon approach can stabilize the geographically correlated orbit errors which are of fundamental interest for the analysis of regional Mean Sea Level trends based on altimeter data, and can therefore provide an interim solution in the event of GRACE data loss. The time series of point-mass solutions for Greenland and Antarctica show good agreement with independent series derived from GRACE data, indicating a mass loss at rate of 210 Gt/year and 110 Gt/year respectively.  相似文献   

4.
The TOPEX/Poseidon, Jason-1 and Jason-2 set of altimeter data now provide a time series of synoptic observations of the ocean that span nearly 17 years from the launch of TOPEX in 1992. The analysis of the altimeter data including the use of altimetry to monitor the global change in mean sea level requires a stable, accurate, and consistent orbit reference over the entire time span. In this paper, we describe the recomputation of a time series of orbits that rely on a consistent set of reference frames and geophysical models. The recomputed orbits adhere to the IERS 2003 standards for ocean and earth tides, use updates to the ITRF2005 reference frame for both the SLR and DORIS stations, apply GRACE-derived models for modeling of the static and time-variable gravity, implement the University College London (UCL) radiation pressure model for Jason-1, use improved troposphere modeling for the DORIS data, and apply the GOT4.7 ocean tide model for both dynamical ocean tide modeling and for ocean loading. The new TOPEX orbits have a mean SLR fit of 1.79 cm compared to 2.21 cm for the MGDR-B orbits. These new TOPEX orbits agree radially with independent SLR/crossover orbits at 0.70 cm RMS, and the orbit accuracy is estimated at 1.5–2.0 cm RMS over the entire TOPEX time series. The recomputed Jason-1 orbits agree radially with the Jason-1 GDR-C orbits at 1.08 cm RMS. The GSFC SLR/DORIS dynamic and reduced-dynamic orbits for Jason-2 agree radially with independent orbits from the CNES and JPL at 0.70–1.06 cm RMS. Applying these new orbits, and using the latest altimeter corrections for TOPEX, Jason-1, and Jason-2 from September 1992 to May 2009, we find a global rate in mean sea level of 3.0 ± 0.4 mm/yr.  相似文献   

5.
The in situ validation of the satellite altimeter sea surface heights is generally performed either at a few local points directly flown over by the satellites or using the global tide gauge network. A regional in situ calibration method was developed by NOVELTIS in order to monitor the altimeter data quality in a perimeter of several hundred kilometres around a given in situ calibration site. The primary advantage of this technique is its applicability not only for missions flying over dedicated sites but also for missions on interleaved or non repetitive orbits. This article presents the altimeter bias estimates obtained with this method at the Corsican calibration site, for the Jason-1 mission on its nominal and interleaved orbits as well as for the Jason-2 and Envisat missions. The various regional bias estimates (8.2 cm and 7.4 cm for Jason-1 respectively on the nominal and interleaved orbits in Senetosa, 16.4 cm for Jason-2 in Senetosa and 47.0 cm for Envisat in Ajaccio, with an accuracy between 2.5 cm and 4 cm depending on the mission) are compared with the results obtained by the other in situ calibration teams. This comparison demonstrates the coherency at the centimetre level, the stability and the generic character of the method, which would also be of benefit to the new and future altimeter missions such as Cryosat-2, SARAL/AltiKa, Sentinel-3, Jason-3, Jason-CS.  相似文献   

6.
This paper describes an innovative method for processing nadir altimeter data acquired in Synthetic Aperture Radar (SAR) mode, enhancing the system performances over open ocean. Similarly to the current SAR data processing scheme, the so-called LR-RMC (Low Resolution with Range Migration Correction) method, originally designed by Phalippou and Demeester (2011), includes Doppler beam forming, Doppler shift correction and range correction. In LR-RMC, however, an alternative and less complex averaging (stacking) operation is used so that all the Doppler beams produced in a radar cycle (4 bursts of 64 beams for the open-burst Sentinel-3-mode altimeter) are incoherently combined to form a multi-beam echo. In that manner, contrarily to the narrow-band SAR technique, the LR-RMC processing enlarges the effective footprint to average out the effects of surface waves and particularly those from small sub-mesoscale structures (<1 km) that are known to impact SAR-mode performances. On the other hand, the number of averaged beams is as high as in current SAR-mode processing, thus providing a noise reduction at least equally good. The LR-RMC method has the added benefit of reducing the incoherent integration time with respect to the SAR-mode processing (50 ms compared to 2.5 s) limiting possible surface movement effects. By processing one year of Sentinel-3A SRAL SAR-mode data using the LR-RMC method, it is shown that the swell impact on the SAR altimeter performances is totally removed and that an improvement of 10–50% is obtained in the measurement noise of the sea surface height and significant wave height with respect to SAR mode. Additionally, observational capabilities over the middle scales are enhanced potentially allowing the ocean mesoscale features to be retrieved and observations assimilated more usefully in ocean models.  相似文献   

7.
We demonstrate in this work how we can take advantage of known unfocused SAR (UF-SAR) retracking methods (e.g. the physical SAMOSA model) for retracking of fully-focused SAR (FF-SAR) waveforms. Our insights are an important step towards consistent observations of sea surface height, significant wave height and backscatter coefficient (wind speed) with both UF-SAR and FF-SAR. This is of particular interest for SAR altimetry in the coastal zone, since coastal clutter may be filtered out more efficiently in the high-resolution FF-SAR waveform data, which has the potential to improve data quality. We implemented a multi-mission FF-SAR altimetry processor for Sentinel-3 (S3) and Sentinel-6 Michael Freilich (S6), using a back-projection algorithm, and analysed ocean waveform statistics compared to multilooked UF-SAR. We find for Sentinel-3 that the averaged power waveforms of UF-SAR and FF-SAR over ocean are virtually identical, while for Sentinel-6 the FF-SAR power waveforms better resemble the UF-SAR zero-Doppler beam. We can explain and model the similarities and differences in the data via theoretical considerations of the waveform integrals. These findings suggest to use the existing UF-SAR SAMOSA model for retracking S3 FF-SAR waveforms but the SAMOSA zero-Doppler beam model for S6 FF-SAR waveforms, instead. Testing the outlined approach over short track segments, we obtain range biases between UF-SAR and FF-SAR lower than 2 mm and significant wave height biases lower than 5 cm.  相似文献   

8.
This study presents the results of calibration/validation (C/V) of Envisat satellite radar altimeter over Lake Issykkul located in Kyrgyzstan, which was chosen as a dedicated radar altimetry C/V site in 2004. The objectives are to estimate the absolute altimeter bias of Envisat and its orbit based on cross-over analysis with TOPEX/Poseidon (T/P), Jason-1 and Jason-2 over the ocean. We have used a new method of GPS data processing in a kinematic mode, developed at the Groupe de Recherche de Geodesie Spatiale (GRGS), which allows us to calculate the position of the GPS antenna without needing a GPS reference station. The C/V is conducted using various equipments: a local GPS network, a moving GPS antenna along the satellites tracks over Lake Issykkul, In Situ level gauges and weather stations. The absolute bias obtained for Envisat from field campaigns conducted in 2009 and 2010 is between 62.1 and 63.4 ± 3.7 cm, using the Ice-1 retracking algorithm, and between 46.9 and 51.2 cm with the ocean retracking algorithm. These results differ by about 10 cm from previous studies, principally due to improvement of the C/V procedure. Apart from the new algorithm for GPS data processing and the orbit error reduction, more attention has been paid to the GPS antenna height calculation, and we have reduced the errors induced by seiche over Lake Issykkul. This has been assured using cruise data along the Envisat satellite track at the exact date of the pass of the satellite for the two campaigns. The calculation of the Envisat radar altimeter bias with respect to the GPS levelling is essential to allow the continuity of multi-mission data on the same orbit, with the expected launch of SARAL/Altika mission in 2012. Implications for hydrology in particular, will be to produce long term homogeneous and reliable time series of lake levels worldwide.  相似文献   

9.
10.
The aim of this work has been to examine the relationship of steep bathymetry in the coastal areas around the permanent Cal/Val facility of Gavdos, and their influence on the produced calibration values for the Jason-2 satellite altimeter. The paper describes how changes in seafloor topography (from 200 to 3500 m depth over a distance of 10 km) are reflected on the determined altimeter parameters using different reference surfaces for satellite calibration. Finally, it describes the relation between these parameter trends and the region’s local characteristics.  相似文献   

11.
We describe results from two decades of monitoring vertical seafloor motion at the Harvest oil platform, NASA’s prime verification site for the TOPEX/Poseidon and Jason series of reference altimeter missions. Using continuous GPS observations, we refine estimates of the platform subsidence—due most likely to fluid withdrawal linked to oil production—and describe the impact on estimates of stability for the altimeter measurement systems. The cumulative seafloor subsidence over 20 yrs is approximately 10 cm, but the rate does not appear constant. The apparent non-linear nature of the vertical motion, coupled with long-period GPS errors, implies that the quality of the seafloor motion estimates is not uniform over the 20-yr period. For the Jason-1 era (2002–2009), competing estimates for the subsidence show agreement to better than 1 mm yr−1. Longer durations of data are needed before the seafloor motion estimates for the Jason-2 era (2008–present) can approach this level of accuracy.  相似文献   

12.
In this paper we present results assessing the role of Very Long Baseline Interferometry (VLBI) tracking data through precision orbit determination (POD) during the check-out phase for Chang’E-1, and the lunar gravity field solution CEGM-01 based on the orbital tracking data acquired during the nominal phase of the mission. The POD of Chang’E-1 is performed using S-band two-way Range and Range Rate (R&RR) data, together with VLBI delay and delay rate observations. The role of the VLBI data in the POD of Chang’E-1 is analyzed, and the resulting orbital accuracies are estimated for different solution strategies. The final orbital accuracies proved that the VLBI tracking data can improve the Chang’E-1 POD significantly. Consequently, CEGM-01 based on six-month tracking data during Chang’E-1 nominal mission phase is presented, and the accuracy of the model is assessed by means of the gravity field power spectrum, admittance and coherence between gravity and topography, lunar surface gravity anomaly and POD for both Chang’E-1 and Lunar Prospector (LP). Our analysis indicates that CEGM-01 has significant improvements over a prior model (i.e. GLGM-2), and shows the potential of Chang’E-1 tracking data in high resolution lunar gravity field model solution by combining with SELENE and LP tracking data.  相似文献   

13.
Driven by the GMES (Global Monitoring for Environment and Security) and GGOS (Global Geodetic Observing System) initiatives the user community has a strong demand for high-quality altimetry products. In order to derive such high-quality altimetry products, precise orbits for the altimetry satellites are a necessity. With the launch of the TOPEX/Poseidon mission in 1992 a still on-going time series of high-accuracy altimetry measurements of ocean topography started, continued by the altimetry missions Jason-1 in 2001 and Jason-2/OSTM in 2008. This paper contributes to the on-going orbit reprocessing carried out by several groups and presents the efforts of the Navigation Support Office at ESA/ESOC using its NAPEOS software for the generation of precise and homogeneous orbits referring to the same reference frame for the altimetry satellites Jason-1 and Jason-2. Data of all three tracking instruments on-board the satellites (beside the altimeter), i.e. GPS, DORIS, and SLR measurements, were used in a combined data analysis. About 7 years of Jason-1 data and more than 1 year of Jason-2 data were processed. Our processing strategy is close to the GDR-C standards. However, we estimated slightly different scaling factors for the solar radiation pressure model of 0.96 and 0.98 for Jason-1 and Jason-2, respectively. We used 30 s sampled GPS data and introduced 30 s satellite clocks stemming from ESOC’s reprocessing of the combined GPS/GLONASS IGS solution. We present the orbit determination results, focusing on the benefits of adding GPS data to the solution. The fully combined solution was found to give the best orbit results. We reach a post-fit RMS of the GPS phase observation residuals of 6 mm for Jason-1 and 7 mm for Jason-2. The DORIS post-fit residuals clearly benefit from using GPS data in addition, as the DORIS data editing improves. The DORIS observation RMS for the fully combined solution is with 3.5 mm and 3.4 mm, respectively, 0.3 mm better than for the DORIS-SLR solution. Our orbit solution agrees well with external solutions from other analysis centers, as CNES, LCA, and JPL. The orbit differences between our fully combined orbits and the CNES GDR-C orbits are of about 0.8 cm for Jason-1 and at 0.9 cm for Jason-2 in the radial direction. In the cross-track component we observe a clear improvement when adding GPS data to the POD process. The 3D-RMS of the orbit differences reveals a good orbit consistency at 2.7 cm and 2.9 cm for Jason-1 and Jason-2. Our resulting orbit series for both Jason satellites refer to the ITRF2005 reference frame and are provided in sp3 file format on our ftp server.  相似文献   

14.
15.
In this study we present an analytical formulation of synthetic-aperture radar (SAR) altimetry signals including narrow banded nonlinear wave fields and conditional statistics between wave elevation displacements, horizontal wave slopes and vertical wave particle velocities. Considering the wave elevation displacements coskewness with respect to horizontal slopes leads to an analytical formulation of the electromagnetic bias within a SAR-mode altimeter stack. This formulation can be either parametrized by the significant wave height (SWH) and mean wave steepness, or in terms of the variance of vertical wave velocities. The effect of conditional vertical wave particle velocity variances with respect to the observed horizontal wave slopes close to nadir incidence angles leads to an effective reduction of the azimuth blurring of SAR-mode stacks. We present here a formulation of this effect by examining JONSWAP ocean wave spectra. In most cases this effect reduces the azimuth blurring by 10% to 30%. Additionally we investigate the effect of a nonlinear wave elevation displacement probability density function (PDF) on estimated geophysical parameters. We were able to show that including an elevation displacement skewness of 0.13 improves significantly the SWH consistency between altimetry and ECMWF Reanalysis v5 ERA5 results.All of these effects are validated with respect to ERA5 model data in the North East Atlantic region and in situ data located in the German Bight and Baltic Sea.The developed model can be used in both SAR and conventional altimetry retrackers.  相似文献   

16.
Remote sensing using GNSS signals: Current status and future directions   总被引:1,自引:0,他引:1  
The refracted, reflected and scattered signals of global navigation satellite systems (GNSS) have been successfully used to remotely sense the Earth’s surface and atmosphere. It has demonstrated its potential to sense the atmosphere and ionosphere, ocean, land surfaces (including soil moisture) and the cryosphere. These new measurements, although in need of refinement and further validation in many cases, can be used to complement existing techniques and sensors, e.g., radiosonde, ionosonde, radar altimetry and synthetic aperture radar (SAR). This paper presents the current status and new developments of remote sensing using GNSS signals as well as its future directions and applications. Some notable emerging applications include monitoring sea ice, dangerous sea states, ocean eddy and storm surges. With the further improvement of the next generation multi-frequency GNSS systems and receivers and new space-based instruments utilizing GNSS reflections and refractions, new scientific applications of GNSS are expected in various environment remote sensing fields in the near future.  相似文献   

17.
Due to the presence of water vapour and cloud liquid water in the atmosphere, the wet component of the troposphere is responsible for a delay in the propagation of the altimeter signals, the Wet Path Delay (WPD). The high space–time variability of the water vapour distribution makes the modelling of WPD difficult, its effect still being one of the main error sources in satellite altimetry applications, e.g. in the estimation of Mean Sea Level (MSL). The understanding and the quantification of the WPD variability on various spatial and temporal scales are the main purposes of this study, in view to improve the MSL error budget. The dominant timescales of WPD variability and its correlation with Sea Level Anomaly (SLA) are examined. In these analyses, the atmospheric reanalysis ERA-Interim model from the European Centre for Medium-Range Weather Forecasts (ECMWF) is used to derive a global dataset of daily grids of WPD, spanning a 28-year period from January 1988 to December 2015. The Seasonal-Trend decomposition procedure based on Loess (STL) is used to extract precise WPD annual and interannual signals. Linear trends have been derived from the interannual time series and the contribution of each STL component was mapped globally, allowing the understanding of the WPD variability in spatial terms. The correlation between SLA and WPD is mapped and decomposed into seasons using monthly mean grids, for a period of 21-years, from January 1993 to December 2013.Aiming at inspecting the sensitivity of the results to the used data set, the WPD temporal analysis is extended to the data set provided by the Special Sensor Microwave Imager (SSM/I) and SSM/I Sounder (SSM/IS) Sensors. The WPD from SSM/I(S) is compared against those from the ERA-Interim and from the National Centers for Environmental Prediction (NCEP).Results show that climate phenomena, especially the El Niño Southern Oscillation (ENSO) are the cause for this high variability, since they affect the water vapour and temperature. The observed trends from ERA-Interim, computed globally and over ocean regions only, allow concluding that WPD is increasing with time by approximately 0.1?mm per year, and the maximum trends are observed for the Pacific North and Indian Oceans. High correlation between WPD and SLA is found over the western tropical Pacific.The comparison between WPD from SSM/I(S) and from ERA-Interim and NCEP, allows concluding that the trends computed using only the SSM/I(S) measurement points are substantially larger.  相似文献   

18.
Long-term change of the global sea level resulting from climate change has become an issue of great societal interest. The advent of the technology of satellite altimetry has modernized the study of sea level on both global and regional scales. In combination with in situ observations of the ocean density and space observations of Earth’s gravity variations, satellite altimetry has become an essential component of a global observing system for monitoring and understanding sea level change. The challenge of making sea level measurements with sufficient accuracy to discern long-term trends and allow the patterns of natural variability to be distinguished from those linked to anthropogenic forcing rests largely on the long-term efforts of altimeter calibration and validation. The issues of long-term calibration for the various components of the altimeter measurement system are reviewed in the paper. The topics include radar altimetry, the effects of tropospheric water vapor, orbit determination, gravity field, tide gauges, and the terrestrial reference frame. The necessity for maintaining a complete calibration effort and the challenges of sustaining it into the future are discussed.  相似文献   

19.
In this study, we evaluate Sentinel-3A satellite synthetic aperture radar (SAR) altimeter observations along the Northwest Atlantic coast, spanning the Nova Scotian Shelf, Gulf of Maine, and Mid-Atlantic Bight. Comparisons are made of altimeter sea surface height (SSH) measurements from three different altimeter data processing approaches: fully-focused synthetic aperture radar (FFSAR), un-focused SAR (UFSAR), and conventional low-resolution mode (LRM). Results show that fully-focused SAR data always outperform LRM data and are comparable or slightly better than the nominal un-focused SAR product. SSH measurement noise in both SAR-mode datasets is significantly reduced compared to LRM. FFSAR SSH 20-Hz noise levels, derived from 80-Hz FFSAR data, are lower than 20-Hz UFSAR SSH with 25% noise reduction offshore of 5 km, and 55–70% within 5 km of the coast. The offshore noise improvement is most likely due to the higher native along-track data posting rate (80 Hz for FFSAR, and 20 Hz for UFSAR), while the large coastal improvement indicates an apparent FFSAR data processing advantage approaching the coastlines. FFSAR-derived geostrophic ocean current estimates exhibit the lowest bias and noise when compared to in situ buoy-measured currents. Assessment at short spatial scales of 5–20 km reveals that Sentinel-3A SAR data provide sharper and more realistic measurement of small-scale sea surface slopes associated with expected nearshore coastal currents and small-scale gyre features that are much less well resolved in conventional altimetric LRM data.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号