首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Starting with average 50% success for stratospheric balloon flights during 1959–1969 and attaining 100% success during 1972–1973, the success record dropped to 50% during 1974–1979. Through a critical analysis of 59 flights made from Hyderabad and 21 flights made from other equatorial bases, revised design criteria were proposed for balloons to be flown from equatorial latitudes, which were accepted by M/s Winzen International, Inc. (WII), U.S.A. and have again raised the success record to 93% for 15 flights made since April 1980. A revised analysis for 71 flights made from 1965 to 1984 has been presented. Stratospheric circulation over Hyderabad indicating predominance of easterlies with mesospheric westerlies descending occasionally into stratosphere has been discussed.  相似文献   

2.
Since 1971, numerous balloons have been launched from the Japanese balloon base, the Sanriku Balloon Center (SBC). Through these years, balloon technologies have been developed continuously and many scientific achievements have resulted. Recently, however, because of the limited area of the launching pad of the SBC, we have been faced with the difficulty of safely launching large balloons. To solve this issue, we decided to move the balloon base from the SBC to the Taiki Aerospace Research Field (TARF) in northern Japan. The TARF had an existing huge hanger and a paved launch pad capable of being utilised for balloon operations. To evolve the TARF into a new balloon base, new balloon facilities have been constructed at the TARF and equipment was transferred from the SBC to the TARF during July 2007 and March 2008. The SBC was closed in September 2007, and the new base became operational in May 2008. The new base at the TARF is designed to launch larger balloons with greater safety and to perform balloon operations more effectively than ever before. In the summer of 2008, we carried out the first series of the balloon campaign at the TARF, and succeeded in two engineering flights of stratospheric balloons. By the success of these flights, we have verified that the whole system of the new balloon base is well established.  相似文献   

3.
The zero pressure plastic balloons used for high altitude studies are generally made from polyethylene material. Tensile properties of the thin film polymer are the key parameters for material selection due to extremely low temperature of −90 °C encountered by the balloons in the tropopause region during the ascent at equatorial latitudes. The physical and structural properties of the material determine the uniformity of the stress distribution over the entire shell. Load stresses from the suspended load propagate via load tapes heat sealed along with the gore seals as per the balloon design. A balance between this heat seal strength and the film strength is a desirable property of the basic resin in terms of the bubble strength, gauge uniformity, and long-term storage properties. In addition, the design of the top shell of the balloon and its stress distribution play an important role since only a fraction of the balloon is deployed during the filling operation and the ascent. In this paper we describe the mechanical properties of the ‘ANTRIX’ film developed by us and the optimized design of single cap balloons, which have been successfully used in our experiments over the past 5 years.  相似文献   

4.
A predictability of the stratospheric zonal winds above 38 km during the turnaround is an essential parameter for planning of the high-altitude scientific balloon flights. This information is more relevant in the case of Hyderabad balloon facility which is closer to equator and has much more unstable wind reversal patterns which appears to have changed enormously during the last decade probably in correlation with the global warming. With a majority of our flights reaching the altitudes of 38–42 km and the requirement of long float durations, a prior knowledge of wind pattern during the summer and winter turnaround seasons is highly desirable. Furthermore, the flight operation corridor for balloon flights from Hyderabad is limited to 400 km and though in the west direction there are flat lands, in all other three directions, the landscape is dotted by water bodies, reserve forests and hilly terrain, and therefore need of such a data is essential. In order to establish the climatology of the stratospheric winds and study their inter-annual variability over Hyderabad for the turnaround periods, we have made a detailed analysis of the United Kingdom Meteorological office data between 2000 and 2007, to derive average wind parameters (magnitude, direction) at different ceiling altitudes above 38 km. These results can be used only as general trend of stratospheric wind and should not be the limitation of the UKMO Data.  相似文献   

5.
Activities in scientific ballooning in Japan during 1998–1999 are reported. The total number of scientific balloons flown in Japan in 1998 and 1999 was sixteen, eight flights in each year. The scientific objectives were observations of high energy cosmic electrons, air samplings at various altitudes, monitoring of atmospheric ozone density, Galactic infrared observations, and test flights of new type balloons. Balloon expeditions were conducted in Antarctica by the National Institute of Polar Research, in Russia, in Canada and in India in collaboration with foreign countries' institutes to investigate cosmic rays, Galactic infrared radiation, and Earth's atmosphere. There were three flights in Antarctica, four flights in Russia, three flights in Canada and two flights in India. Four test balloons were flown for balloon technology, which included pumpkin-type super-pressure balloon and a balloon made with ultra-thin polyethylene film of 3.4 μm thickness.  相似文献   

6.
Established in 1971, the National Balloon Facility operated by TIFR in Hyderabad, India, is a unique facility in the country, which provides a complete solution in scientific ballooning. It is also one of its kind in the world since it combines both, the in-house balloon production and a complete flight support for scientific ballooning. With a large team working through out the year to design, fabricate and launch scientific balloons, the Hyderabad Facility is a unique centre of expertise where the balloon design, research and development, the production and launch facilities are located under one roof. Our balloons are manufactured from 100% indigenous components. The mission specific balloon design, high reliability control and support instrumentation, in-house competence in tracking, telemetry, telecommand, data processing, system design and mechanics is its hallmark. In the past few years, we have executed a major programme of upgradation of different components of balloon production, telemetry and telecommand hardware and various support facilities. This paper focuses on our increased capability of balloon production of large sizes up to 780,000 m3 using Antrix film, development of high strength balloon load tapes with the breaking strength of 182 kg, and the recent introduction of S-band telemetry and a commandable timer cut-off unit in the flight hardware. A summary of the various flights conducted in recent years will be presented along with the plans for new facilities.  相似文献   

7.
During the past two decades there have been many significant advances made in the state-of-the-art of scientific ballooning. High altitude long duration flights, of moderate to heavy payloads, however, have proven to be the one requirement of the scientific community that has been the most difficult to meet. Conventional and cryogenic ballasting systems, super pressure balloons and hybrid balloon systems are some of the approaches that have been taken to maintain experiments at altitude for extended periods of time. The results of those development efforts and various methods of data retrieval will be discussed.  相似文献   

8.
Development of a balloon to fly at higher altitudes is one of the most attractive challenges for scientific balloon technologies. After reaching the highest balloon altitude of 53.0 km using the 3.4 μm film in 2002, a thinner balloon film with a thickness of 2.8 μm was developed. A 5000 m3 balloon made with this film was launched successfully in 2004. However, three 60,000 m3 balloons with the same film launched in 2005, 2006, and 2007, failed during ascent. The mechanical properties of the 2.8 μm film were investigated intensively to look for degradation of the ultimate strength and its elongation as compared to the other thicker balloon films. The requirement of the balloon film was also studied using an empirical and a physical model assuming an axis-symmetrical balloon shape and the static pressure. It was found that the film was strong enough. A stress due to the dynamic pressure by the wind shear is considered as the possible reason for the unsuccessful flights. A 80,000 m3 balloon with cap films covering 9 m from the balloon top will be launch in 2011 to test the appropriateness of this reinforcement.  相似文献   

9.
Development overview of the revised NASA Ultra Long Duration Balloon   总被引:1,自引:0,他引:1  
The desire for longer duration stratospheric flights at constant float altitudes for heavy payloads has been the focus of the development of the National Aeronautics and Space Administration’s (NASA) Ultra Long Duration Balloon (ULDB) effort. Recent efforts have focused on ground testing and analysis to understand the previously observed issue of balloon deployment. A revised approach to the pumpkin balloon design has been tested through ground testing of model balloons and through two test flights. The design approach does not require foreshortening, and will significantly reduce the balloon handling during manufacture reducing the chances of inducing damage to the envelope. Successful ground testing of model balloons lead to the fabrication and test flight of a ∼176,000 m3 (∼6.2 MCF – Million Cubic Foot) balloon. Pre-flight analytical predictions predicted that the proposed flight balloon design to be stable and should fully deploy. This paper provides an overview of this first test flight of the revised Ultra Long Duration Balloon design which was a short domestic test flight from Ft. Sumner, NM, USA. This balloon fully deployed, but developed a leak under pressurization. After an extensive investigation to the cause of the leak, a second test flight balloon was fabricated. This ∼176,000 m3 (∼6.2 MCF) balloon was flown from Kiruna, Sweden in June of 2006. Flight results for both test flights, including flight performance are presented.  相似文献   

10.
Launching a large balloon in a limited launching field is a long standing problem in Japan. The largest balloon ever launched successfully was 200,000 m3 in volume. It was launched in 1973. A larger balloon with a volume of 500,000 m3 was tried later, but it burst during the ascending phase. For launching balloons with a large lift exceeding 500 kg, the conventional static launching method had the most serious problem with possible damage to the polyethylene film of the balloon caused by the holding mechanism. After that, we had developed a new static launching method to launch balloons with a total lift of 1.0 ton. For launching a large balloon with a total lift above 1.5 ton, the new static launching method had a weak point in that if there was an air bubble in the folded part of the balloon, it may puncture the balloon as it is pushed by a spool. To avoid this problem, we developed a semi-dynamic launching method in 1999 using a launcher fixed to the ground leaving a freedom of rotation around the vertical axis. We have launched some balloons using the method and have gradually enriched our experience in using this system.In 2003, we successfully launched a balloon with a volume of 500,000 m3 by using the method. This balloon was made of polyethylene films with a thickness of 20 μm and it is the largest balloon ever launched in Japan.  相似文献   

11.
Highly sophisticated balloon-borne scientific payloads have stringent requirement on the telemetry and command system. The development and fabrication of the on-board TT&C package for telemetry, tracking, command, safety and ranging for these experiments is done in-house at the National Balloon Facility (NBF) at Hyderabad. In the last few years, we have made major improvements both in the ground station and the on-board sub-systems, thereby improving the data quality, data handling speed and the general flight control along with aviation safety. The new system has telemetry data rate up to 1 Mbps. A reduction in weight, power and cost of the reengineered on-board integrated package has also lead to the ease of operation during field tests prior to launch and at remote recovery sites. In this paper, we describe the details of the new control package, its flight performance and our plans for portable S-band telemetry and telecommand system to cater to the balloon flights from Antarctic station and long duration balloon flights.  相似文献   

12.
Improvements of materials can extend the performance of scientific balloon flights in altitude, suspended load and duration. The impact of new materials is considered in the design of superpressure balloons for long duration improvement, ultra light weight for sounding balloons, and a launch technique for minimizing relative wind problems.  相似文献   

13.
Sea-anchored balloons are stratospheric super-pressure balloons that are anchored to the sea. The sea-anchored balloon is a simple system that has the capability for long-duration flights, fixed-point observations, flexible launch windows, easy telemetry links to ground stations, and quick recoveries. Such balloons are not required to fly through the jet stream while tethered to the ground or sea, because the tether is deployed from a reel on the balloon after reaching a floating altitude. In this study, the feasibility of the sea-anchored balloon is investigated, with particular emphasis on the tether strength, balloon altitude, and system mass, based on the present technological level of the tether’s specific strength. Although the wind distribution with altitude is a dominant factor for feasibility, a sea-anchored balloon with an altitude of about 25 km would be feasible if the velocity of the jet stream is sufficiently low. The sea-anchored balloon can be simply flight-tested, since additional ground facilities and special flight operations are not necessary.  相似文献   

14.
The High Altitude Student Platform (HASP) was originally conceived to provide student groups with access to the near-space environment for flight durations and experiment capabilities intermediate between what is possible with small sounding balloons and low Earth orbit rocket launches. HASP is designed to carry up to twelve student payloads to an altitude of about 36 km with flight durations of 15–20 h using a small zero-pressure polyethylene film balloon. This provides a flight capability that can be used to flight-test compact satellites, prototypes and other small payloads designed and built by students. HASP includes a standard mechanical, power and communication interface for the student payload to simplify integration and allows the payloads to be fully exercised. Over the last two years a partnership between the NASA Balloon Program Office (BPO), Columbia Scientific Balloon Facility (CSBF), Louisiana State University (LSU), the Louisiana Board of Regents (BoR), and the Louisiana Space Consortium (LaSPACE) has led to the development, construction and, finally, the first flight of HASP with a complement of eight student payloads on September 4, 2006. Here we discuss the primary as-built HASP systems and features, the student payload interface, HASP performance during the first flight and plans for continuing HASP flights. The HASP project maintains a website at http://laspace.lsu.edu/hasp/ where flight application, interface documentation and status information can be obtained.  相似文献   

15.
This paper describes the systems for long duration flights developed in Japan for scientific observations. Much efforts have been expended to evolve systems for long duration flights in Japan, by controlling the balloon trajectories with a knowledge of wind pattern at high altitudes over Japan. These systems called “Cycling Balloon”, “Boomerang Balloon” and “New Boomerang Balloon” have been successfully used for the observations by keeping the balloons close to the balloon station.“Relay Balloon” is another system to extend the telemetry range by using an additional balloon as a relay station to link the telemetry from the main balloon.Some detailes of the exhaust valve, ascent meter and automatic level control devices used for the balloon control are also described in the paper.  相似文献   

16.
Polar patrol balloon experiments were carried out at Syowa Station in Antarctica from 2002 to 2004. Two balloons were launched for the purpose of observing phenomena in the polar atmosphere and one was done for the observation of high energy cosmic electrons. We developed a new housekeeping system including communication device using the Iridium satellite network, an auto-level controller driven by a new program for keeping the flight altitude, and a power management system for solar cells combined with secondary batteries.Two balloons for studying phenomena in the Antarctic atmosphere launched on January 13, 2003 made flights for 18 days and 25 days, respectively. All the housekeeping system worked well during the flights as we expected. Based on these experiments, we adjusted parameters for the altitude control system and the power management system. We launched a balloon for the cosmic electron observation on January 4, 2004. It flew 13 days around the Antarctica with the perfect operation of the onboard housekeeping system. We hope that fruitful scientific results will be obtained from these long-duration flights.  相似文献   

17.
Properties of tandem balloons connected by extendable suspension wires   总被引:1,自引:0,他引:1  
The tandem balloon system has been known as a candidate system for long duration flight balloons. In this paper, the properties of the system are analytically studied in a new way by introducing an extendable suspension wire in the Sky Anchor configuration, which consists of a zero-pressure main balloon suspending a payload and a super-pressure balloon suspended below the payload. It was found that extension of the suspension wire between the payload and the super-pressure balloon can extend the capability of the tandem system; the altitude of the zero-pressure balloon can be changed without any consumables except some energy, and the day–night oscillation of the balloon altitude can be suppressed. This property is useful as the vehicle for long duration flights. It is also pointed out that the method to control the altitude of a balloon using an additional suspended super-pressure balloon can also be applied for super-pressure balloons.  相似文献   

18.
The new zonal mean COSPAR International Reference Atmosphere (CIRA-86) of temperature, zonal wind, and geopotential/geometric height is presented. This data can be used as a function of altitude or pressure and has nearly pole-to-pole coverage (80°S-80°N) extending from the ground to approximately 120 km. Data sources and methods of computation are described; in general, hydrostatic and thermal wind balance are maintained at all levels and latitudes. As shown by a series of cross sectional plots, the new CIRA accurately reproduces most of the characteristic features of the atmosphere such as the equatorial wind and the general structure of the tropopause, stratopause, and mesopause.  相似文献   

19.
An outstanding issue with aerospace workforce development is what should be done at the university level to attract and prepare undergraduates for an aerospace career. One approach adopted by many institutions is to lead students through the design and development of small payloads (less than about 500 grams) that can be carried up to high altitude (around 30 km) by a latex sounding balloon. This approach has been very successful in helping students to integrate their content knowledge with practical skills and to understand the end-to-end process of aerospace project development. Sounding balloons, however, are usually constrained in flight duration (∼30 min above 24 km) and payload weight, limiting the kinds investigations that are possible. Student built picosatellites, such as CubeSats, can be placed in low Earth orbit removing the flight duration constraint, but the delays between satellite development and launch can be years. Here, we present the inexpensive high altitude student platform (HASP) that is designed to carry at least eight student payloads at a time to an altitude of about 36 km with flight durations of 15–20 h using a small zero-pressure polyethylene film balloon. This platform provides a flight capability greater than sounding balloons and can be used to flight-test compact satellites, prototypes and other small payloads designed and built by students. The HASP includes a standard mechanical, power and communication interface for the student payload to simplify integration and allows the payloads to be fully exercised. HASP is lightweight, has simple mission requirements providing flexibility in the launch schedule, will provide a flight test opportunity at the end of each academic year.  相似文献   

20.
There have been four major thrusts in plastic, zero pressure balloon design in the U.S. since the late 1940's. First, the pioneer balloonists made designs according to geometric shapes. When these balloons began to fail, a study at the University of Minnesota produced the first mathematical model for determining the proper design for “natural shaped” balloons. With the advent of high speed digital computing came the “Sigma” tables of the 1960's. When computers became more widespread and inexpensive, direct or “full-sized” designs began to be used. Now, with the problems involved in flying heavy payloads (greater than 400 lbs) and super pressure balloons, a new tool has become available to the balloon designer. An inexpensive stress analysis code is available but is as yet unproven.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号