首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
We describe a Bayesian sampling model for linking and constraining orbit models from angular observations of “streaks” in optical telescope images. Our algorithm is particularly suited to situations where the observation times are small fractions of the orbital periods of the observed objects or when there is significant confusion of objects in the observation field. We use Markov Chain Monte Carlo to sample from the joint posterior distribution of the parameters of multiple orbit models (up to the number of observed tracks) and parameters describing which tracks are linked with which orbit models. Using this algorithm, we forecast the constraints on geosynchronous (GEO) debris orbits achievable with the planned Large Synoptic Survey Telescope (LSST). Because of the short 15 s exposure times, preliminary orbit determinations of GEO objects from LSST will have large and degenerate errors on the orbital elements. Combined with the expected crowded fields of GEO debris it will be challenging to reliably link orbital tracks in LSST observations given the currently planned observing cadence.  相似文献   

2.
Improved orbit predictions using two-line elements   总被引:1,自引:0,他引:1  
The density of orbital space debris constitutes an increasing environmental challenge. There are two ways to alleviate the problem: debris mitigation and debris removal. This paper addresses collision avoidance, a key aspect of debris mitigation. We describe a method that contributes to achieving a requisite increase in orbit prediction accuracy for objects in the publicly available two-line element (TLE) catalog. Batch least-squares differential correction is applied to the TLEs. Using a high-precision numerical propagator, we fit an orbit to state vectors derived from successive TLEs. We then propagate the fitted orbit further forward in time. These predictions are validated against precision ephemeris data derived from the international laser ranging service (ILRS) for several satellites, including objects in the congested sun-synchronous orbital region. The method leads to a predicted range error that increases at a typical rate of 100 m per day, approximately a 10-fold improvement over individual TLE’s propagated with their associated analytic propagator (SGP4). Corresponding improvements for debris trajectories could potentially provide conjunction analysis sufficiently accurate for an operationally viable collision avoidance system based on TLEs only.  相似文献   

3.
The Faculty of Mathematics, Physics and Informatics of Comenius University in Bratislava, Slovakia (FMPI) operates its own 0.7-m Newtonian telescope (AGO70) dedicated to the space surveillance tracking and research, with an emphasis on space debris. The observation planning focuses on objects on geosynchronous (GEO), eccentric (GTO and Molniya) and global navigation satellite system (GNSS) orbits. To verify the system’s capabilities, we conducted an observation campaign in 2017, 2018 and 2019 focused on astrometric and photometric measurements. In last two years we have built up a light curve catalogue of space debris which is now freely available for the scientific community. We report periodic signals extracted from more than 285 light curves of 226 individual objects. We constructed phase diagrams for 153 light curves for which we obtained apparent amplitudes.  相似文献   

4.
Knowledge about the rotation properties of space debris objects is essential for the active debris removal missions, accurate re-entry predictions and to investigate the long-term effects of the space environment on the attitude motion change. Different orbital regions and object’s physical properties lead to different attitude states and their change over time.Since 2007 the Astronomical Institute of the University of Bern (AIUB) performs photometric measurements of space debris objects. To June 2016 almost 2000 light curves of more than 400 individual objects have been acquired and processed. These objects are situated in all orbital regions, from low Earth orbit (LEO), via global navigation systems orbits and high eccentricity orbit (HEO), to geosynchronous Earth orbit (GEO). All types of objects were observed including the non-functional spacecraft, rocket bodies, fragmentation debris and uncorrelated objects discovered during dedicated surveys. For data acquisition, we used the 1-meter Zimmerwald Laser and Astrometry Telescope (ZIMLAT) at the Swiss Optical Ground Station and Geodynamics Observatory Zimmerwald, Switzerland. We applied our own method of phase-diagram reconstruction to extract the apparent rotation period from the light curve. Presented is the AIUB’s light curve database and the obtained rotation properties of space debris as a function of object type and orbit.  相似文献   

5.
碎片数量估计是空间碎片环境统计特征描述的重要内容之一,对于空间碎片环境模型验证、航天器碰撞风险分析以及碎片数量增长趋势预测有重要意义.针对波束指向正东、正南任意仰角的雷达波束驻留(Beam-park)模式(天顶指向是波束指向仰角为90°时的特例),给出了一种估计碎片数量置信区间的方法.对于给定轨道高度范围内一个具有穿越雷达波束可能性(即雷达散射截面足够大,且轨道倾角相对测站纬度足够大)的碎片,将其是否真正穿越波束这一随机事件用(0-1)分布来建模,根据所采集的轨道高度和倾角数据,计算出该轨道高度范围内碎片穿越波束的平均概率,进而采用中心极限定理来估计碎片数量的置信区间.仿真结果表明了方法的有效性.   相似文献   

6.
A key requirement for accurate trajectory prediction and space situational awareness is knowledge of how non-conservative forces affect space object motion. These forces vary temporally and spatially, and are driven by the underlying behavior of space weather particularly in Low Earth Orbit (LEO). Existing trajectory prediction algorithms adjust space weather models based on calibration satellite observations. However, lack of sufficient data and mismodeling of non-conservative forces cause inaccuracies in space object motion prediction, especially for uncontrolled debris objects. The uncontrolled nature of debris objects makes them particularly sensitive to the variations in space weather. Our research takes advantage of this behavior by utilizing observations of debris objects to infer the space environment parameters influencing their motion.The hypothesis of this research is that it is possible to utilize debris objects as passive, indirect sensors of the space environment. We focus on estimating atmospheric density and its spatial variability to allow for more precise prediction of LEO object motion. The estimated density is parameterized as a grid of values, distributed by latitude and local sidereal time over a spherical shell encompassing Earth at a fixed altitude of 400 km. The position and velocity of each debris object are also estimated. A Partially Orthogonal Ensemble Kalman Filter (POEnKF) is used for assimilation of space object measurements to estimate density.For performance comparison, the scenario characteristics (number of objects, measurement cadence, etc.) are based on a sensor tasking campaign executed for the High Accuracy Satellite Drag Model project. The POEnKF analysis details spatial comparisons between the true and estimated density fields, and quantifies the improved accuracy in debris object motion predictions due to more accurate drag force models from density estimates. It is shown that there is an advantage to utilizing multiple debris objects instead of just one object. Although the work presented here explores the POEnKF performance when using information from only 16 debris objects, the research vision is to utilize information from all routinely observed debris objects. Overall, the filter demonstrates the ability to estimate density to within a threshold of accuracy dependent on measurement/sensor error. In the case of a geomagnetic storm, the filter is able to track the storm and provide more accurate density estimates than would be achieved using a simple exponential atmospheric density model or MSIS Atmospheric Model (when calm conditions are assumed).  相似文献   

7.
In this work, we present a symplectic integration scheme to numerically compute space debris motion. Such an integrator is particularly suitable to obtain reliable trajectories of objects lying on high orbits, especially geostationary ones. Indeed, it has already been demonstrated that such objects could stay there for hundreds of years. Our model takes into account the Earth’s gravitational potential, luni-solar and planetary gravitational perturbations and direct solar radiation pressure. Based on the analysis of the energy conservation and on a comparison with a high order non-symplectic integrator, we show that our algorithm allows us to use large time steps and keep accurate results. We also propose an innovative method to model Earth’s shadow crossings by means of a smooth shadow function. In the particular framework of symplectic integration, such a function needs to be included analytically in the equations of motion in order to prevent numerical drifts of the energy. For the sake of completeness, both cylindrical shadows and penumbra transitions models are considered. We show that both models are not equivalent and that big discrepancies actually appear between associated orbits, especially for high area-to-mass ratios.  相似文献   

8.
The world’s economy has become heavily dependent on the services provided by satellites. With the exponential increase in satellite launches, the population of defunct or inactive hardware in space has grown substantially. This is especially true in sensitive orbits such as the Low Earth Orbit (LEO) and Geostationary Earth Orbit (GEO) regimes. These objects, collectively known as orbital debris, can reach speeds of up to 28 000km h?1 in LEO. At these orbital speeds, even the smallest of objects can pose a considerable threat to operational satellites or astronauts. This makes the monitoring, and detection, of these objects of the utmost importance. This work describes the latest detection strategy used in one of Europe’s largest Space Situational Awareness (SSA) installation; the BIstatic RAdar for LEo Survey (BIRALES) space debris radar. We present a novel bottom-up approach that makes use of single-linkage clustering to identify faint radar streaks in spectrogram data. Tests on synthetic data have shown that the detection strategy presented in this study obtains a higher detection rate when it is compared against existing methods. Unlike other approaches, this detection strategy, using the Multi-beam streak detection strategy (MSDS) algorithm, was still able to recall 90% of the track information at an Signal-to-Noise Ratio (SNR) of 2dB.  相似文献   

9.
Optical survey is a main technique for observing space debris, and precisely measuring the positions of space debris is of great importance. Due to several factors, e.g. the angle object normal to the observer, the shape as well as the attitude of the object, the variations of observed characteristics for low earth orbital space debris are distinct. When we look at optical CCD images of observed objects, the size and brightness are varying, hence it’s difficult to decide the threshold during centroid measurement and precise astrometry. Traditionally the threshold is given empirically and constantly in data reduction, and obviously it’s not suitable for data reduction of space debris. Here we offer a solution to provide the threshold. Our method assumes that the PSF (point spread function) is Gaussian and estimates the signal flux by a directly two-dimensional Gaussian fit, then a cubic spline interpolation is performed to divide each initial pixel into several sub-pixels, at last the threshold is determined by the estimation of signal flux and the sub-pixels above threshold are separated to estimate the centroid. A trail observation of the fast spinning satellite Ajisai is made and the CCD frames are obtained to test our algorithm. The calibration precision of various threshold is obtained through the comparison between the observed equatorial position and the reference one, the latter are obtained from the precise ephemeris of the satellite. The results indicate that our method reduces the total errors of measurements, it works effectively in improving the centering precision of space debris images.  相似文献   

10.
The space debris environment is one of the major threats against payloads. Space debris orbital distribution is of great importance for space debris environment modeling. Due to perturbation factors, the Right Ascension of Ascending Node (RAAN) of space objects changes consistently, causing regular rotation of the orbit plane around Earth’s axis. Based on the investigation of the RAAN perturbation rate of concerned objects, this paper proposes a RAAN discretization method in order to present the space debris longitude-dependent distribution. Combined with two line element (TLE) data provided by the US Space Surveillance Network, the estimated value from RAAN discretization method is compared with the real case. The results suggest that using only the initial orbital data at the beginning of the time interval of interest, the RAAN discretization method is able to provide reliable longitude distribution of concerned targets in the next following period. Furthermore, spacecraft cumulative flux against space debris is calculated in this paper. The results suggest that the relevance between spacecraft RAAN setup and flux output is much smaller for LEO targets than MEO targets, which corresponds with the theory analysis. Since the nonspherical perturbation is the major factor for RAAN variation, the RAAN perturbation rate has little connection with the size of orbital objects. In other words, the RAAN discretization method introduced in this paper also applies to space debris of different size range, proposing a possible suggestion for the improvement of space debris environment engineering models.  相似文献   

11.
为解决运动目标在遮挡情况下的跟踪问题,提出一种基于目标运动预测与自适应多子块模板匹配相结合的抗遮挡跟踪算法.该算法建立了多子块模板匹配相关算法中遮挡情况的判定、子块模板匹配及自适应更新等准则,采用卡尔曼滤波模型预测目标在遮挡时的运动轨迹,并利用一种基于目标速度矢量的模板定位规则实现目标在遮挡结束后的接力跟踪.将该算法应用于存在多种遮挡情况下的实际视频中进行测试,实验结果表明:该算法不仅能够实现在部分遮挡情况下的目标跟踪,而且能在严重遮挡、甚至完全遮挡情况下对刚体和非刚体目标进行稳定有效地跟踪,保持目标运动轨迹的可靠性和完整性.  相似文献   

12.
A joint team of researchers under the auspices of the Center for Space Debris Information Collection, Processing and Analysis of the Russian Academy of Sciences collaborates with 15 observatories around the world to perform observations of space debris. For this purpose, 14 telescopes were equipped with charge-coupled device (CCD) cameras, Global Positioning System (GPS) receivers, CCD frame processing and ephemeris computation software, with the support of the European and Russian grants. Many of the observation campaigns were carried out in collaboration with the Astronomical Institute of the University of Bern (AIUB) team operating at the Zimmerwald observatory and conducting research for the European Space Agency (ESA), using the Tenerife/Teide telescope for searching and tracking of unknown objects in the geostationary region (GEO). More than 130,000 measurements of space objects along a GEO arc of 340.9°, collected and processed at Space Debris Data Base in the Ballistic Center of the Keldysh Institute of Applied Mathematics (KIAM) in 2005–2006, allowed us to find 288 GEO objects that are absent in the public orbital databases and to determine their orbital elements. Methods of discovering and tracking small space debris fragments at high orbits were developed and tested. About 40 of 150 detected unknown objects of magnitudes 15–20.5 were tracked during many months. A series of dedicated 22-cm telescopes with large field of view for GEO survey tasks is in process of construction. 7 60-cm telescopes will be modernized in 2007.  相似文献   

13.
The number of Earth orbiting objects is constantly growing, and some orbital regions are becoming risky environments for space assets of interest, which are increasingly threatened by accidental collisions with other objects, especially in Low-Earth Orbit (LEO). Collision risk assessment is performed by various methods, both covariance and non-covariance based. The Cube algorithm is a non-covariance-based method used to estimate the collision rates between space objects, whose concept consists in dividing the space in cubes of fixed dimension and, at each time instant, checking if two or more objects share the same cube. Up to now its application has been limited to the long-term scenarios of orbital debris evolutionary models, where considering the uncertainties is not necessary and impractical. Within operative contexts, instead, medium-term collision risk analysis may be an important task, in which the propagation-related uncertainties play a prominent role, but the timescale poses challenges for the application of standard covariance-based conjunction analysis techniques. In this framework, this paper presents an approach for the evaluation of the medium-term collision frequency for objects in LEO, called Uncertainty-aware Cube method. It is a modified version of the Cube, able to take the possible errors in the space objects’ position into account for the detection of the conjunctions. As an object’s orbit is propagated, the along-track position error grows more and more, and each object could potentially be in a different position with respect to the one determined by numerical propagation and, thus, in a different cube. Considering the uncertainties, at each time instant the algorithm associates more than one cube to each object and checks if they share at least one cube. If so, a conjunction is detected and a degree of confidence is evaluated. The performance of the method is assessed in different LEO scenarios and compared to the original Cube method.  相似文献   

14.
The Borowiec Satellite Laser Ranging station (BORL 7811, Borowiec) being a part of the Space Research Centre of the Polish Academy of Sciences (SRC PAS) went through modernization in 2014–2015. One of the main tasks of the modernization was the installation of a high-energy laser module dedicated to space debris tracking. Surelite III by Continuum is a Nd:YAG pulse laser with 10?Hz repetition rate, a pulse width of 3–5?ns and a pulse energy of 450?mJ for green (532?nm). This new laser unit was integrated with the SLR system at Borowiec performing standard satellite tracking. In 2016 BORL 7811 participated actively to the observational campaigns related to the space debris targets from LEO region managed by the Space Debris Study Group (SDSG) of the International Laser Ranging Service (ILRS).Currently, Borowiec station regularly tracks 36 space debris from the LEO regime, including typical rocket bodies (Russian/Chinese) and cooperative targets like the inactive TOPEX/Poseidon, ENVISAT, OICETS and others. In this paper the first results of space debris laser measurements obtained by the Borowiec station in period August 2016 – January 2017 are presented. The results gained by the SRC PAS Borowiec station confirm the rotation of the defunct TOPEX/Poseidon satellite which spins with a period of approximately 10?s. The novelty of this work is the presentation of the sample results of the Chinese CZ-2C R/B target (NORAD catalogue number 31114) which is equipped (probably) with retroreflectors. Laser measurements to space debris is a very desirable topic for the next years, especially in the context of the Space Surveillance and Tracking (SST) activity. Some targets are very easy to track like defunct ENVISAT or TOPEX/Poseidon. On the other hand, there is a big population of different LEO targets with different orbital and physical parameters, which are challenging for laser ranging like small irregular debris and rocket boosters.  相似文献   

15.
This study proposes a motion detection and object tracking technique for GEO debris in a sequence of images. A couple of techniques (called the “stacking method” and “line-identifying technique”) were recently proposed to address the same problem. Although these techniques are effective at detecting the debris position and motion in the image sequences, there are some issues concerned with computational load and assumed debris motion. This study derives a method to estimate motion vectors of objects in image sequence and finally detect the debris locations by using a computer vision technique called an optical flow algorithm. The new method detects these parameters in low computational time in a serial manner, which implies that it has an advantage to track not only linear but also nonlinear motion of GEO debris more easily than the previous methods. The feasibility of the proposed methods is validated using real and synthesized image sequences which contain some typical debris motions.  相似文献   

16.
It is estimated that more than 22,300 human-made objects are in orbit around the Earth, with a total mass above 8,400,000 kg. Around 89% of these objects are non-operational and without control, which makes them to be considered orbital debris. These numbers consider only objects with dimensions larger than 10 cm. Besides those numbers, there are also about 2000 operational satellites in orbit nowadays. The space debris represents a hazard to operational satellites and to the space operations. A major concern is that this number is growing, due to new launches and particles generated by collisions. Another important point is that the development of CubeSats has increased exponentially in the last years, increasing the number of objects in space, mainly in the Low Earth Orbits (LEO). Due to the short operational time, CubeSats boost the debris population. One of the requirements for space debris mitigation in LEO is the limitation of the orbital lifetime of the satellites, which needs to be lower than 25 years. However, there are space debris with longer estimated decay time. In LEÓs, the influence of the atmospheric drag is the main orbital perturbation, and is used in maneuvers to increment the losses in the satellite orbital energy, to locate satellites in constellations and to accelerate the decay.The goal of the present research is to study the influence of aerodynamic rotational maneuver in the CubeSat?s orbital lifetime. The rotational axis is orthogonal to the orbital plane of the CubeSat, which generates variations in the ballistic coefficient along the trajectory. The maneuver is proposed to accelerate the decay and to mitigate orbital debris generated by non-operational CubeSats. The panel method is selected to determine the drag coefficient as a function of the flow incident angle and the spinning rate. The pressure distribution is integrated from the satellite faces at hypersonic rarefied flow to calculate the drag coefficient. The mathematical model considers the gravitational potential of the Earth and the deceleration due to drag. To analyze the effects of the rotation during the decay, multiple trajectories were propagated, comparing the results obtained assuming a constant drag coefficient with trajectories where the drag coefficient changes periodically. The initial perigees selected were lower than 400 km of altitude with eccentricities ranging from 0.00 to 0.02. Six values for the angular velocity were applied in the maneuver. The technique of rotating the spacecraft is an interesting solution to increase the orbit decay of a CubeSat without implementing additional de-orbit devices. Significant changes in the decay time are presented due to the increase of the mean drag coefficient calculated by the panel method, when the maneuver is applied, reducing the orbital lifetime, however the results are independent of the angular velocity of the satellite.  相似文献   

17.
In the framework of its space debris research activities ESA established an optical survey program to study the space debris environment at high altitudes, in particular in the geostationary ring and in the geostationary transfer orbit region. The Astronomical Institute of the University of Bern (AIUB) performs these surveys on behalf of ESA using ESA’s 1-m telescope in Tenerife. Regular observations were started in 1999 and are continued during about 120–140 nights per year. Results from these surveys revealed a substantial amount of space debris at high altitudes in the size range from 0.1 to 1 m. Several space debris populations with different dynamical properties were identified in the geostationary ring. During the searches for debris in the geostationary transfer orbit region a new population of objects in unexpected orbits, where no potential progenitors exist, was found. The orbital periods of these objects are clustered around one revolution per day; the eccentricities, however, are scattered between 0 and 0.6. By following-up some of these objects using the ESA telescope and AIUB’s 1-m telescope in Zimmerwald, Switzerland, it was possible to study the properties of this new population. One spectacular finding from monitoring the orbits over time spans of days to months is the fact that these objects must have extreme area-to-mass ratios, which are by several orders of magnitudes higher than for ‘normal-type’ debris. This in turn supports the hypothesis that the new population actually is debris generated in or near the geostationary ring and which is in orbits with periodically varying eccentricity and inclination due to perturbations by solar radiation pressure. In order to further study the nature of these debris, multi-color and temporal photometry (light curves) were acquired with the Zimmerwald telescope. The light curves show strong variations over short time intervals, including signals typical for specular reflections. Some objects exhibit distinct periodic variations with periods ranging from 10 to several 100 s. All this is indicative for objects with complicated shapes and some highly reflective surfaces.  相似文献   

18.
19.
Under ESA contract an industrial consortium including Aboa Space Research Oy (ASRO), the Astronomical Institute of the University of Bern (AIUB), and the Dutch National Aerospace Laboratory (NLR), proposed the observation concept, developed a suitable sensor architecture, and assessed the performance of a space-based optical (SBO) telescope in 2005. The goal of the SBO study was to analyse how the existing knowledge gap in the space debris population in the millimetre and centimetre regime may be closed by means of a passive optical instrument. The SBO instrument was requested to provide statistical information on the space debris population in terms of number of objects and size distribution. The SBO instrument was considered to be a cost-efficient with 20 cm aperture and 6° field-of-view and having flexible integration requirements. It should be possible to integrate the SBO instrument easily as a secondary payload on satellites launched into low-Earth orbits (LEO), or into geostationary orbit (GEO). Thus the selected mission concept only allowed for fix-mounted telescopes, and the pointing direction could be requested freely. Since 2007 ESA focuses space surveillance and tracking activities in the Space Situational Awareness (SSA) preparatory program. Ground-based radars and optical telescopes are studied for the build-up and maintenance of a catalogue of objects. In this paper we analyse how the proposed SBO architecture could contribute to the space surveillance tasks survey and tracking. We assume that the SBO instrumentation is placed into a circular sun-synchronous orbit at 800 km altitude. We discuss the observation conditions of objects at higher altitude, and select an orbit close to the terminator plane. A pointing of the sensor orthogonal to the orbital plane with optimal elevation slightly in positive direction (0° and +5°) is found optimal for accessing the entire GEO regime within one day, implying a very good coverage of controlled objects in GEO, too. Simulations using ESA’s Program for Radar and Optical Observation Forecasting (PROOF) in the version 2005 and a GEO reference population extracted from DISCOS revealed that the proposed pointing scenario provides low phase angles together with low angular velocities of the objects crossing the field-of-view. Radiometric simulations show that the optimal exposure time is 1–2 s, and that spherical objects in GEO with a diameter of below 1 m can be detected. The GEO population can be covered under proper illumination nearly completely, but seasonal drops of the coverage are possible. Subsequent observations of objects are on average at least every 1.5 days, not exceeding 3 days at maximum. A single observation arc spans 3° to 5° on average. Using a simulation environment that connects PROOF to AIUB’s program system CelMech we verify the consistency of the initial orbit determination for five selected test objects on subsequent days as a function of realistic astrometric noise levels. The initial orbit determination is possible. We define requirements for a correlator process essential for catalogue build-up and maintenance. Each single observation should provide an astrometric accuracy of at least 1”–1.5” so that the initially determined orbits are consistent within a few hundred kilometres for the semi-major axis, 0.01 for the eccentricity, and 0.1° for the inclination.  相似文献   

20.
基于相控阵雷达波束篱笆的空间碎片数量与分布估计方法   总被引:1,自引:1,他引:0  
随着载人航天与空间站等航天活动的增多,不能有效防护、也无法定期跟踪和编目的小尺寸(尤其是1~10 cm)碎片的危害越来越受到关注,这些碎片信息的获取依赖于统计采样技术.针对简化的相控阵雷达波束篱笆空间碎片探测模式,提出了一种采用统计技术估计空间碎片总数量以及高度和倾角分布的方法.将碎片穿越波束篱笆的过程用Poisson分布来建模,根据观测时段内穿越波束篱笆目标的平均到达率及测量的轨道高度和倾角数据来估计给定轨道高度范围或倾角范围内碎片的数量,进而得到碎片的总数量以及碎片数量随轨道高度或倾角的分布.在获取雷达散射截面信息时,该方法还可用于估计碎片数量随尺寸的分布.通过仿真实验验证了该方法的有效性.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号