首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Observations of the OI 630 nm nightglow emission using a wide-angle imaging system have been carried out at Cachoeira Paulista (22.7° S, 45° W, 15.8° S dip latitude), Brazil during the period 1987 to 1999. The OI 630 nm images obtained during this period show frequently the optical signature of the plasma bubble (quasi north-south aligned depleted intensity regions). During the period studied a strong seasonal variation was noticed in the plasma bubble formations. Also, it was observed that, during high solar activity, the plasma bubble bifurcation occurrences were higher than during low solar activity. Important features from this set of observations are presented and discussed in this paper.  相似文献   

2.
This study is an extension of previous statistical studies (Sobral et al., 1990, 1991, 1999) of both the local time and latitude variations of the zonal drift velocities of ionospheric plasma depletions, over the Brazilian low latitude station Cachoeira Paulista — CP (22.54°S, 45.00°W). The past studies were based on OI 630 nm scanning photometer data and the present one is based on digital OI 630 nm airglow images obtained by an all-sky imager system. These data were gathered between October 1998 and October 1999, at CP. The present results show that, in general, the velocities clearly tended to decrease with local time. Such a decrease should be associated with decreasing intensity of the vertical component of the ambient electric field which, in turn can be accounted for by recombination. All zonal drifts obtained for the 18 nights were eastwards. During equinox, the velocities clearly tended to decrease with local time at lower rates as compared with spring and summer. The highest and lowest zonal drift velocities, from all three seasons considered here, were observed to be in the summer ≈180 ms−1 at 21:45 LT, and in the spring ≈25 ms−1 at 03:15 LT, respectively. Ionospheric plasma bubbles were detected out to the maximum extra-tropical geographical latitude of ≈28° S, which was the highest latitude position analyzed in this study.  相似文献   

3.
海南地区电离层不规则体纬向漂移速度的观测和研究   总被引:3,自引:2,他引:1  
根据中国海南富克(19.3°N,109.1°E)三点GPS观测系统2007年3月至11月的观测数据,利用互相关方法分析了三站闪烁信号的时间延迟,得出了不规则体纬向漂移的基本特征.在中国海南地区,闪烁主要发生在春秋季节,夜间不规则体的纬向漂移速度以东向为主,大小在50~150 m/s之间;平均东向漂移速度随时间呈下降趋势.另外,在闪烁刚发生时,不规则体纬向速度起伏较大,这可能与不规则体的随机起伏以及等离子体泡产生时垂直速度较大有关.中国海南地区不规则体纬向漂移速度的这些基本特征与低纬其他地区的测量结果较为一致.  相似文献   

4.
This investigation uses simultaneous observations from all-sky imager system and an ionosonde collocated at Araguatins (5.65° S, 48.07° W and dip-latitude of 4.17° S), a near-equatorial region in Brazil. These simultaneous observations were used to investigate the occurrence of plasma bubbles and blobs in the field of the imaging system and their association with atypical range Spread-F signature in ionograms. Also, in-situ observation of plasma density from Swarm satellites were used to support the ground-based observations. Using a few cases, a methodology will be established to identify in the plasma blobs (atypical ESF) in the ionograms when there is the simultaneous observation of plasma bubbles and blobs in the field of view of the ionosonde. For this purpose, simultaneous sequence of OI 630.0 nm nightglow images and ionograms are presented for different case studies; 1. when there is the absence of a plasma bubble or blob, 2. when there is only the occurrence of plasma bubbles and 3. when there is the occurrence of plasma bubbles and blobs, in order to compare traces in the ionogram in all these case studies. With these we can cover all kinds of signatures in the ionograms corresponding to no irregularities, plasma bubbles only and plasma bubbles-blobs. These OI 630.0 nm nightglow and ionograms recorded simultaneously make it possible to establish a novel methodology to recognize in ionograms cases when there is the occurrence of Spread-F signature associated with bubble-blob in the FOV of the ionosonde.  相似文献   

5.
冯桃君  于钱  张凯 《空间科学学报》2022,42(6):1100-1110
原子氧135.6 nm夜气辉主要由氧离子O+与电子的辐射复合反应生成,一些星载远紫外遥感观测任务证实135.6 nm夜气辉可用于反演电离层电子密度。针对远紫外临边遥感观测反演电离层电子密度,分析了135.6 nm夜气辉辐射强度与电子密度之间的非线型前向模型,基于离散反演理论设计了从夜间135.6 nm临边观测数据反演电子密度高度分布的反演算法,算法应用最大似然估计通过迭代求解电离层参数的最佳拟合值。通过仿真计算了TIMED卫星上全球紫外成像仪GUVI观测的反演结果,验证了本反演算法的可行性。对GUVI的实际观测数据进行反演,获得了电子密度高度分布。通过与GUVI数据的电离层参数对比分析得出,本文建立的反演模型使NmF2被高估,同时使hmF2被低估。对于不同的太阳活动强度,NmF2和 hmF2的系统误差分别在10%和5%以内,能较精确地获得电离层参数。精确获得电离层电子密度信息对于提高空间天气预报及电离层模型的修正具有重要意义。   相似文献   

6.
Plasma transport is very important for understanding the space-time variations of the ionosphere. Therefore, following a resolution of URSI Subcommission G4, an effort is made to create a computer code describing the main results of investigations the ionospheric drift which were not considered in IRI-1979.

The experimental data from 23 stations in the Northern Hemisphere were obtained between 1957 and 1970. The worldwide coverage in geographic latitude is 7°N to 71°N (7.5° to 64.1° geomagnetic) and O° to 131°E geographic longitude.

We have developed appropriate procedure which allow us to infer from these data the main parameters of the global ionospheric motions at E- and F-region levels.

An algorithm for computing the zonal and meridional drift components VX, VY can be found in IRI-1990.

The last version of the computer programm called DRIFT which does the test calculation of Ionospheric Drifts Global Model whith printing the tables at the Epson printer is written in Turbo ascal for the IBM PC AT 286/287 compatible computers. Program code (execute module) is about 25 Kbyte. Data files are about 10 Kbyte.

E- and F-region horizontal ionospheric irregularities drift data, worldwide obtained from 1957 to 1970 by D1 and D3 methods, are statistically analysed and a computer code for the average velocity variations in latitude and local time for some solar activity levels is constructed. The PC program DRIFT allows to determine zonal and meridional drift velocities of ionospheric irregularities at the lower (90 < h < = 140 km) and upper (h > 140 km) ionosphere.

The main block of the program DRIFT is the procedure DRIRR for calculating VX and VY for a period (P), geomagnetic (geographic) latitude (FI) and local time (LT) to be specified.

The example of the program DRIFT calculation for F-region (REG=2) and for the whole period of observations (P=1) is in Table. VX > 0 to east, VY > 0 to north. FI is geomagnetic latitude.  相似文献   


7.
Simultaneous measurements of the ionospheric airglow OI 630.0 nm and OI 557.7 nm emissions have been carried out by means of an all-sky CCD imager system at Cachoeira Paulista, since October 1998. During a developed phase of plasma depletion (bubble) in the equatorial anomaly region, both emissions show intensity depletions along the geomagnetic North—South direction, and also bifurcation of the bubbles. It is frequently observed that the OI 557.7 image shows more fine structure of the bubble than the OI 630.0. The amplitude of the intensity depletion was also larger for OI557.7 than OI630.0. This might be due to the difference in life time between the O(1D) and O(1S) states, which are responsible for the OI 630.0 and OI 557.7 emissions, respectively. The O(1D) might be affected by thermal relaxation and diffusion processes before the radiative transition.  相似文献   

8.
The characteristics of the equatorial F-region zonal plasma drift during post-sunset period have been investigated using the multi-frequency HF Doppler radar. The pattern of the zonal plasma drift is such that it starts with a westward drift during the pre-sunset hours, followed by an eastward drift shortly after the E-region sunset. The zonal plasma drift is characterized by the presence of a positive vertical shear around the post-sunset period and maximum shear is observed at the time of the peak of the pre-reversal enhancement in the vertical drift. The presence of vertical shear in the zonal drift is associated with the post-sunset velocity vortex existing at the equatorial F-region.  相似文献   

9.
In this study we have used VHF and GPS-SCINDA receivers located at Nairobi (36.8°E, 1.3°S, dip −24.1°) in Kenya, to investigate the ionospheric scintillation and zonal drift irregularities of a few hundred meter-scale irregularities associated with equatorial plasma density bubbles for the period 2011. From simultaneous observations of amplitude scintillation at VHF and L-band frequencies, it is evident that the scintillation activity is higher during the post sunset hours of the equinoctial months than at the solstice. While it is noted that there is practically no signatures of the L-band scintillation in solstice months (June, July, December, January) and after midnight, VHF scintillation does occur in the solstice months and show post midnight activity through all the seasons. VHF scintillation is characterized by long duration of activity and slow fading that lasts till early morning hours (05:00 LT). Equinoctial asymmetry in scintillation occurs with higher occurrence in March–April than in September–October. The occurrence of post midnight VHF scintillation in this region is unusual and suggests some mechanisms for the formation of scintillation structure that might not be clearly understood. Zonal drift velocities of irregularities were measured using cross-correlation analysis with time series of the VHF scintillation structure from two closely spaced antennas. Statistical analyses of the distribution of zonal drift velocities after sunset hours indicate that the range of the velocities is 30–160 m/s. This is the first analysis of the zonal plasma drift velocity over this region. Based on these results we suggest that the east–west component of the plasma drift velocity may be related to the evolution of plasma bubble irregularities caused by the prereversal enhancement of the eastward electric fields. The equinoctial asymmetry of the drift velocities and scintillation could be attributed to the asymmetry of neutral winds in the thermosphere that drives the eastward electric fields.  相似文献   

10.
基于GPS的广州地区电离层不规则体纬向漂移速度计算分析   总被引:1,自引:1,他引:0  
利用广州站组建的两台短间距GPS电离层闪烁监测仪的观测数据, 分别对GPS卫星信号强度用功率谱和短间距台链互相关性两种方法计算了3次闪烁事件电离层不规则体的漂移速度. 分析结果表明, 同一不规则体会引起两台站闪烁事件的同时发生, 两种方法测量不规则体漂移速度通常在50~160m/s之间, 平均大小均在120m/s左右, 且纬向漂移速度在闪烁初期起伏较明显, 速度随闪烁时间有下降的趋势, 夜间纬向漂移方向由西向东, 广州地区漂移速度特性符合低纬其他地区不规则体漂移速度特征, 两种计算方法合理有效.   相似文献   

11.
This investigation presents observations related to the generation of equatorial ionospheric irregularities (also known as equatorial spread F (ESF)) including ionospheric plasma bubbles and dynamic behavior of the ionospheric F-region in the South American sector during an intense geomagnetic storm in December 2006 (a period of low solar activity). In this work, ionospheric sounding observations and GPS data obtained between 13 and 16 December 2006 at several stations in the South American sector are presented. On the geomagnetically disturbed night of 14 and 15 December, ionospheric plasma bubbles were observed after an unusual uplifting of the F-region during pre-reversal enhancement (PRE) period. The unusual uplifting of the F-region during PRE was possibly associated with prompt penetration of electric field of magnetospheric origin. During the geomagnetic disturbance night of 14 and 15 December, strong oscillations due to the propagation of traveling ionospheric disturbances (TIDs) by the Joule heating in the auroral region were observed in the F-region at São José dos Campos (SJC, 23.2°S, 45.9°W; dip latitude 17.6°S), Brazil, and Port Stanley (PST, 51.6°S, 57.9°W; geom. latitude 41.6°S). The VTEC-GPS observations presented on the night of 14 and 15 December 2006 show both positive and negative storm phases in the South American sector, possibly due to changes in the large-scale wind circulation and changes in the O/N2 ratio in the southern hemisphere, respectively.  相似文献   

12.
Gravity wave effects in the nocturnal thermospheric F-region domain are seldom detected in the intertropical region by optical (airglow) techniques, especially during geomagnetically quiet times, in part because the low inclination of the magnetic field, as opposed to the case of the mid-latitude region, does not favor significant vertical excursions of ionospheric plasma in response to meridional winds. Such difficulty in detecting gravity wave signatures in the F-region by means of optical techniques tends to increase in the absence of geomagnetic storms because of the lack of strong forcing mechanisms necessary to generate high intensity gravity waves. The purpose of this work is to show that during the quiet day of 9 August 1999, the Terminator may have been a source region of wave-like disturbances in the nocturnal F-region at the low-latitude station Cachoeira Paulista (22°41'S; 45°00W, dip 30°). A digital all-sky OI 630nm imager system located at that station has shown propagating wave-like spatial structures in the airglow intensity near the Terminator. This observation supports a previous study on the evidence of the presence of gravity waves during the post-sunset period at the same location by means of a scanning photometer system (1997, Sobral, J. Atmos. Terr. Phys. 59, 1611–1623). The absence of range-type spread-F as monitored by a local digisonde and the absence of radio wave scintillation as monitored by a local GPS receiver, excludes the hypothesis that the wave-like airglow structures are associated with the occurrence of the ionospheric plasma bubbles. Downwards motion of the iso-density real height contours at 22.0 ms−1 and 33.1 ms−1 are observed. The wave detection by the imager system is reported and discussed here.  相似文献   

13.
This study presents the response of thermospheric O1D 630.0 nm dayglow emission to the variability associated with equatorial Counter Electrojet (CEJ) events. The analysis based on the data from a meridian scanning Dayglow Photometer, Digital Ionosonde and Proton Precession Magnetometer over Trivandrum (8.5°N, 77°E, 0.5°dip lat.), indicates that the O1D 630.0 nm emission behave distinctly different during the CEJ events compared to that on normal days. It has been observed that O1D 630.0 nm emission shows enhancement during the negative excursion of the ΔH, followed by an unusual depletion during the peak CEJ time. The observed variability was found to be more pronounced in a latitudinal region of ±3° centered at around the dip equator. In addition, the emission intensities also exhibit the presence of enhanced short period oscillations of periodicity 20–30 min during the CEJ events. Analysis of the data from the collocated ionosonde revealed that the F-region electron density showed enhancement during the early phase of the CEJ and a decrease during the peak CEJ. Further, the simulation studies using a Quasi 2 dimensional ionospheric model showed that the modified plasma fountain during the CEJ can alter the plasma density at the emission centroid. The study reveals a strong dynamical coupling between the E and F-region of the dip equatorial ionosphere.  相似文献   

14.
电离层等离子体不规则结构通常会影响星地卫星的通信、导航及定位等,因此研究不规则体的结构特征和演化过程具有非常重要的科学意义和应用价值。中尺度电离层行进式扰动(MSTID)是一种常发于F层的电离层扰动,其演化过程十分复杂。本文利用伊春和兴隆台站全天空气辉成像仪、Swarm卫星、佳木斯高频雷达以及漠河和十三陵台站数字测高仪观测数据,对2018年10月17日夜间出现在中国东北区域上空的MSTID事件进行分析。该MSTID事件传播时间较长,在气辉观测中持续时间超过4 h(12:02-16:23 UT),其波长范围为176.3~322.5 km,波速范围为67.0~154.1 m·s–1。研究结果显示,该MSTID可能产生于较高的纬度,自东北向西南往中纬传播,依次经过伊春和兴隆台站的气辉观测区域。   相似文献   

15.
This paper reports the nightglow observations of OI 630.0 nm emissions, made by using all sky imager operating at low latitude station Kolhapur (16.8°N, 74.2°E and dip lat. 10.6°N) during high sunspot number years of 24th solar cycle. The images are analyzed to study the nocturnal, seasonal and solar activity dependence occurrence of plasma bubbles. We observed EPBs in images regularly during a limited period 19:30 to 02:30 LT and reach maximum probability of occurrence at 22:30 LT. The observation pattern of EPBs shows nearly no occurrence during the month of May and it maximizes during the period October–April. The equinox and solstice seasonal variations in the occurrence of plasma bubbles show nearly equal and large differences, respectively, between years of 2010–11 and 2011–12.  相似文献   

16.
Analysing the initial mid-latitude aurora phase during strong geomagnetic storms we found that the initial phase of the mid-latitude aurorae observed at 630 nm emission during the strong geomagnetic storms on March 24, 1991, April 6, 2000, October 30 and November 20, 2003 is characterized by a short (∼1 h) wave-like disturbance. This disturbance corresponds to the beginning of main phase of the magnetic storms. The marked effect of the mid-latitude aurorae is analyzed using data on magnetosphere and ionosphere conditions in observation periods. The features of the dynamics of the 630 nm emission intensity and its connection with the dynamics of magnetospheric–ionospheric structures are considered. Possible excitation mechanisms of the atomic oxygen emission (630 nm) during these disturbances are discussed.  相似文献   

17.
黄勇  程立  张方 《空间科学学报》2012,32(3):348-353
在电离层高度释放SF6气体能够显著扰动电离层.根据SF6分子在电离层中的扩散方程,同时考虑其在电离层中主要的离子化学反应,研究了SF6气体释放后电离层各粒子浓度的时空变化,计算了产生人工气辉的体发射系数和发射强度.结果表明,SF6气体在电离层高度释放后,电子和O+的密度均有大幅度下降,主要的负离子成分由电子转变成SF5-;在释放过程中,主要产生777.4 nm和135.6 nm两种气辉,且前者的气辉强度远小于后者;电离层温度对气辉的强度有很大的影响.本文的数值计算与美国IMS/SF6实验观测数据进行比较,结果近似,且通过数据比较还能准确推断出实验时当地的电离层温度.  相似文献   

18.
利用海南台站和东南亚地区的多种地基和天基观测手段,对2014年7月28日夜间观测到的东亚低纬F区不规则体事件的时空变化及其物理过程进行分析。结果表明,海南台站观测到了罕见的长时间持续的F区电离层不规则体,不同手段观测到的电离层不规则体存在明显的形态差异。不同台站观测到的电离层不规则体活动存在明显的差异。海南台站经度区南北异常峰附近的TEC起伏活动在日落后至午夜附近明显增强,在午夜后明显减弱。C/NOFS卫星轨迹午夜后逐渐接近于磁赤道,且处于较低高度上,几乎总会观测到弱等离子体扰动/泡的发生,与该区域地基观测的弱电离层不规则体活动存在明显的联系。SWARM卫星在黎明海南台站附近经度区仍观测到较强的赤道异常双峰结构,且西侧异常峰区附近仍存在明显的等离子体密度耗空/泡结构。海南台站西侧磁赤道区附近(中南半岛)强对流活动(MCC)激发的重力波种子扰动对东亚低纬区等离子体泡及准周期结构的产生发挥了重要作用。   相似文献   

19.
20.
中高层大气风场探测对研究大气物理过程具有极为重要的意义,尤其是在极地地区,风场对大气结构的影响更为剧烈.针对亚暴期间中国北极黄河站和日本Tromso站上空OI557.7nm气辉层(低热层)中性风场,利用全天空法布里-珀罗干涉仪(all-sky Fabry-Perot Interferometer,all-sky FPI)探测气辉谱线的多普勒频移,反演气辉层的大气风场信息.结果表明,低热层风场平均水平在100m·s-1左右,热层风场在极地地区更为剧烈,纬度相对较低的Tromso站探测到的风速整体小于同期黄河站上空的风速.结合离子风数据,分析离子拖拽和焦耳加热对中性风的影响过程,发现极光亚暴不仅对低热层风场有增强作用,也有明显的抑制效果,但整体风向都垂直于极光弧变化.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号