首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
卫星相对空间目标任意位置悬停的方法研究   总被引:7,自引:4,他引:3  
介绍了卫星相对空间目标悬停的相关研究情况,然后,进行了卫星相对空间目标任意位置实现悬停的受力分析,给出了实现任意位置悬停的非开普勒轨道开环控制方案,分析了对不同高度目标在不同相对位置实施悬停的能量消耗代价。最后,给出了对典型目标实施悬停的仿真计算结果,表明这一方法是可行的。  相似文献   

2.
椭圆轨道卫星空间任意位置悬停的方法   总被引:3,自引:0,他引:3  
对任务星施加持续的控制加速度,使其在飞行过程中相对于目标卫星的空间位置保持不变,即实现任意位置悬停飞行。通过对任务星与目标星的相对运行分析和重力差异补偿分析,给出了在飞行过程中任务星相对于运行在椭圆轨道上的目标星实现任意位置悬停所需的径向、切向和法向控制加速度公式。最后对典型悬停飞行过程进行了动力学仿真,并对不同悬停飞行任务的能量消耗进行了对比分析,表明在一段时间内对任务星进行轨道悬停是可行的。  相似文献   

3.
非圆轨道卫星实现共面悬停的方法   总被引:1,自引:0,他引:1  
通过矢量控制,使任务卫星始终在目标卫星的轨道平面内飞行,同时保证"任务卫星-目标卫星-地心"的夹角和两颗卫星间的相对距离保持不变,从而实现共面悬停飞行。重点进行了任务卫星悬停飞行的动力学理论分析,推导了悬停飞行过程中任务卫星相对于目标卫星的径向和切向加速度需求,给出了开环控制方案,对不同悬停任务的能量需求进行了对比分析,最后对悬停飞行过程进行了动力学仿真。  相似文献   

4.
主要研究空间非合作目标近距离逼近过程的控制系统设计与仿真问题.针对采用双目视觉敏感器实现对非合作目标的观测情况,提出一种考虑成像误差的目标位置矢量计算方法,有效保证目标位置解算的可行性.在主星视线坐标系下,分别考虑逼近过程的最大相对速度约束、控制推力和力矩约束,设计了基于非线性项解耦的递阶饱和PID形式的近距离逼近位置控制律和姿态控制律,并在逼近过程中设置停泊点以确保与目标无碰撞.最后对典型航天器非合作目标抓捕任务进行了数学仿真,仿真结果表明所提出的方法可在满足各种约束的情况下有效实现任意方向的空间非合作目标的抓捕任务.  相似文献   

5.
卫星对空间目标悬停的轨道动力学与控制方法研究   总被引:2,自引:0,他引:2  
首先,给出了卫星悬停的轨道动力学模型,然后提出了悬停轨道的一种"持续式"的开路轨道控制策略,即通过在一段时间对轨道实施连续有限推力控制,使得在这段时间内卫星运行在新的悬停轨道上,而非开普勒轨道。最后,以地球静止轨道卫星为目标星,研究了悬停轨道的实施途径,并进行了数学仿真。仿真结果表明,在一段时间内对空间目标实施轨道悬停是可行的。  相似文献   

6.
基于状态转移矩阵的航天器多脉冲悬停方法   总被引:1,自引:0,他引:1  
基于航天器相对运动的状态转移矩阵描述,研究了空间相对悬停的多脉冲控制方法,解决了工程实践中连续推力悬停轨道控制技术对航天器控制推进系统要求较高的难题。给出了两航天器在圆、椭圆和双曲线等圆锥曲线参考轨道上相对运动的状态转移矩阵描述。在此基础上,定性分析了椭圆参考轨道偏心率对悬停精度的影响,推导了航天器多脉冲悬停速度脉冲控制量的计算方法。数值仿真算例显示,该方法可有效实现一定悬停精度要求下的空间相对悬停控制,且随着一个轨道周期内脉冲数的增加,相对悬停的效果得到提升。  相似文献   

7.
为验证空间站柔性机械臂系统在有初始位置、姿态误差的情况下能否成功完成辅助舱段对接任务,文章建立了空间站柔性机械臂辅助舱段对接动力学模型,模型考虑了对接机构的接触碰撞,依据关节精细动力学模型、力矩控制方法和阻抗控制程序进行了空间柔性机械臂辅助舱段对接过程仿真。仿真结果表明,当关节输出端位置测量精度为17位时,依靠阻抗控制的方法,空间柔性机械臂在主动舱存在最大位置误差150mm,最大姿态误差2.5°的情况下仍能完成对接;对接成功后,空间柔性机械臂系统控制力迅速下降,仍然能较好地保持构型,不会影响对接舱段的安全。  相似文献   

8.
针对多星近距离绕飞观测任务,建立了相对姿态轨道动力学模型,分别考虑了在椭圆、空间圆绕飞轨道上观测卫星的两种期望三角形编队构型,以观测卫星视线始终指向目标为期望姿态,采用基于四元数和角速度误差反馈的比例 微分控制律以及一种改进的基于人工势场法的制导方法相结合,对相对姿态及轨道进行控制。仿真结果表明:在控制律的作用下,绕飞过程中各观测卫星均能够有效地跟踪期望相对姿态和期望相对轨道;在空间圆绕飞轨道构型中,各观测卫星从初始同一位置出发后,在任意时刻3颗观测卫星构成的编队构型始终为正三角形,且正三角形的边长从零逐渐增大,最终等于期望正三角形构型的边长。  相似文献   

9.
基于混杂系统的空间飞行器悬停控制   总被引:3,自引:1,他引:2  
基于空间飞行器的轨道动力学原理,利用混杂系统模型研究了悬停轨道问题,建立了悬停轨道的混杂系统模型;借此模型,针对目标星轨道为椭圆的情况,提出了等距离悬停轨道控制和椭圆悬停轨道控制两种方案,分别推导出在这两种方案下对悬停星所施加的控制力。数值仿真结果表明,分别对悬停星施加相应的控制力,能够实现对目标星的悬停。  相似文献   

10.
微分代数方法可以在不改变当前算法计算过程的基础上给出函数对自变量任意阶导数的精确值。本文给出了一种基于微分代数的任意阶空间目标轨道传播方法。本方法首先将初始微分代数代入轨道传播方程,然后用获得的高阶导数构造新的高阶微分代数。用新的高阶微分代数迭代前述过程可求解空间目标状态对时间的任意阶导数。最后,将任意阶导数代入泰勒展开公式求解空间目标轨道单步传播。本方法要求轨道传播方程采用的摄动力模型在轨道传播积分区间上是解析的。本文通过仿真分析验证了所提方法的有效性。  相似文献   

11.
针对电磁航天器编队近地轨道悬停问题,提出一种在缺少参考轨道准确信息时的协同控制方法。用TH方程描述航天器间的相对运动,选择与参考轨道同周期的圆轨道为标称轨道。将参考轨道相对于标称圆轨道的偏差、地球非球形引力、大气阻力及其他天体引力等参数单独归类,视其为不确定量,构成不确定系统。通过引入一致性理论,在电磁作用模型和动力学方程均存在不确定性的条件下,针对航天器编队悬停的目标设计了鲁棒协同控制律。考虑能量消耗最优和均衡以及轨道姿态解耦,给出了通过优化进行磁矩配置的方案。仿真结果表明,所设计的鲁棒协同控制律能够实现编队电磁航天器高精度悬停,所给出的磁矩配置方案能够实现磁矩的合理分配。   相似文献   

12.
To achieve hovering, a spacecraft thrusts continuously to induce an equilibrium state at a desired position. Due to the constraints on the quantity of propellant onboard, long-time hovering around low-Earth orbits (LEO) is hardly achievable using traditional chemical propulsion. The Lorentz force, acting on an electrostatically charged spacecraft as it moves through a planetary magnetic field, provides a new propellantless method for orbital maneuvers. This paper investigates the feasibility of using the induced Lorentz force as an auxiliary means of propulsion for spacecraft hovering. Assuming that the Earth’s magnetic field is a dipole that rotates with the Earth, a dynamical model that characterizes the relative motion of Lorentz spacecraft is derived to analyze the required open-loop control acceleration for hovering. Based on this dynamical model, we first present the hovering configurations that could achieve propellantless hovering and the corresponding required specific charge of a Lorentz spacecraft. For other configurations, optimal open-loop control laws that minimize the control energy consumption are designed. Likewise, the optimal trajectories of required specific charge and control acceleration are both presented. The effect of orbital inclination on the expenditure of control energy is also analyzed. Further, we also develop a closed-loop control approach for propellantless hovering. Numerical results prove the validity of proposed control methods for hovering and show that hovering around low-Earth orbits would be achievable if the required specific charge of a Lorentz spacecraft becomes feasible in the future. Typically, hovering radially several kilometers above a target in LEO requires specific charges on the order of 0.1 C/kg.  相似文献   

13.
针对挠性航天器姿态稳定控制,基于退步控制方法与直接自适应控制方法提出了一种自适应控制策略。首先将挠性航天器模型分解为运动学子系统和动力学子系统,并设计具有理想控制性能的参考模型;然后在姿态小角度的假设下,对满足近似严格正实性的姿态运动学子系统设计了直接自适应中间控制律;最后运用退步控制方法对航天器动力学子系统设计了姿态控制器,并证明了闭环系统的稳定性。理论分析和数值仿真结果表明该控制器对挠性航天器的姿态稳定控制是有效的。  相似文献   

14.
For spacecraft hovering in low orbit, a high precision spacecraft relative dynamics model without any simplification and considering J2 perturbation is established in this paper. Using the derived model, open-loop control and closed-loop control are proposed respectively. Gauss's variation equations and the coordinate transformation method are combined to deal with the relative J2 perturbation between the two spacecraft. The sliding mode controller is adopted as the closed-loop controller for spacecraft hovering. To improve the control accuracy, the relative J2 perturbation is regarded as a known parameter term in the closed-loop controller. The external uncertainty perturbations except J2 perturbation are estimated by numerical difference method, and the boundary layer method is used to weaken the impact of chattering on the sliding mode controller. The open-loop control of spacecraft hovering with the relative J2 perturbation and without the relative J2 perturbation are simulated and compared, and the results prove that the accuracy of open-loop control with relative J2 perturbation has been significantly improved. Similarly, the simulation of the closed-loop control are presented to validate the effectiveness of the designed sliding mode controller, and the results demonstrate that the designed sliding mode controller including the derived relative J2 perturbation can guarantee the high accuracy and robustness of spacecraft hovering in long-term mission.  相似文献   

15.
针对航天器相对姿态跟踪过程中严重的非线性及控制器设计的复杂性,建立了基于修正罗德里格斯参数的航天器相对姿态运动学和动力学方程并根据Lyapunov直接法设计了非线性前馈控制律.设计的控制律不仅保证闭环系统稳定,还使得航天器相对姿态跟踪误差快速收敛到零点邻域内.通过在Matlab/Simulink环境下对航天器相对姿态跟踪进行数值仿真,验证了建立模型和设计控制律的有效性.  相似文献   

16.
A new switching control algorithm under constant thrust is designed for the chaser fast flying around the target spacecraft along a specified fly-around trajectory. The switching control laws are obtained based on the acceleration sequences and the on time of thrusters which can be computed by the time series analysis method. The perturbations and fuel consumptions are addressed during the computation of the on time of thrusters. Furthermore, the relative position parameters of the target spacecraft are obtained by using the vision measurement and the target fly-around positions are calculated through the isochronous interpolation method. The change of the relative position and the relative velocity of the chaser during the constant thrust fast fly-around are presented through simulation example. It is proved that, with the switching control laws, the chaser will fast fly around the target spacecraft along the specified fly-around trajectory.  相似文献   

17.
This paper investigates the asteroid hovering problem using the Multiple-Overlapping-Horizon Multiple-Model Predictive Control method. The effectiveness of the predictive controllers in satisfying control constraints and minimizing the required control effort is making Model Predictive Control a desirable control method for asteroid exploration missions which consist of the asteroid hovering phase. However, the computational burden of Model Predictive Control is an obstacle to employing the asteroid’s complex gravitational field model. As an alternative option, the Multiple Horizon Multiple-Model Predictive Control method has been introduced previously, which could provide a solution with the less computational burden with respect to the nonlinear Model Predictive Control. It was shown that it is not necessary to deduce the exact dynamics model to predict the system’s behavior during a long period using this approach. However, the calculated control acceleration was not smooth enough because of the crisp borders of consecutive horizons, which may cause an image motion and degrades the geometric accuracy of high-resolution images in asteroid hovering missions. In this paper, the Multiple-Overlapping-Horizon Multiple-Model Predictive Control method is introduced instead to solve the problem of controlling acceleration fluctuations by overlapping consecutive horizons. Numerical simulation results are presented to validate the effectiveness of the proposed control method, and its advantage is demonstrated accordingly for the asteroid hovering problem in achieving the hovering position and velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号