首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
合成了同时含有芴基以及醚键的二胺单体,9,9-双(4-胺基苯氧基苯基)芴(BAOFL),并对其进行熔点、红外以及核磁表征。结果表明,该单体具有很高的纯度。分别采用3,3,′4,4′-联苯四甲酸二酐(sBPDA)以及2,3,3,′4′-联苯四甲酸二酐(aBPDA)与BAOFL聚合,通过热亚胺化法以及化学亚胺化法分别制备聚酰亚胺(PI)。研究芴取代基对PI耐热性能、溶解性能以及光学性能的影响。结果表明,引入芴取代基可以显著提高PI树脂在有机溶剂中的溶解性能以及在可见光区良好的透明性。同时,PI具有良好的耐热稳定性,玻璃化转变温度超过280℃,氮气中起始热分解温度超过500℃。  相似文献   

2.
采用1,4-双(3'-氨基-5'-三氟甲基苯氧基)联苯(m-TFDAB)为二胺单体,分别与两种联苯型二酐单体,3,3',4,4'-联苯四甲酸二酐(s-8BPDA)以及2,3,3',4'-联苯四甲酸二酐(a-BPDA)通过一步高温溶液缩聚法制备了两种聚酰亚胺材料PI-1(s-BPDA/m-TFDAB)与PI-2(a-BPDA/m-TFDAB).研究结果表明,不对称化结构没有对聚酰亚胺材料的耐热性能、力学性能以及电性能产生显著影响.但可以显著增大聚酰亚胺在有机溶剂中的溶解性以及在可见光范围内的透明性.PI-2不仅可以溶解于极性非质子性溶剂中,而且在许多常规溶剂中也具有优良的溶解性能.PI-2薄膜在可见光波长范围内具有优良的透明性,450nm处的透光率达到86%.此外,该材料在氮气中的起始热分解温度超过580℃,而700℃时的残余重量百分数达到67%.  相似文献   

3.
利用主链含有吡啶环的新型四胺单体,2,6-双(3,’4’-二氨基苯基)-4-氟苯基吡啶(FP-PA)与几种芳香族四酸二酐单体,2,2-双[4-(3,’4’-二羧基苯氧基)苯基]丙烷二酐(BPADA)、3,3,’4,4’-二苯醚四羧酸二酐(ODPA)、3,3,’4,4’-二苯甲酮四羧酸二酐(BTDA)或4,4’-(六氟异丙基)双邻苯二甲酸二酐(6FDA)通过热缩聚、热环化反应成功制备了一系列具有半梯形主链结构的芳杂环聚合物-聚吡咙(PPy)。结果表明:所制备的聚吡咙具有优异的耐热稳定性;其玻璃化转变温度达到367℃,在氮气氛围中的起始热分解温度超过500℃,10%失重温度超过560℃,750℃时的殘重率超过60%。另外,聚吡咙薄膜表现出优良的耐碱水解性能,在10%NaOH水溶液中浸泡7d后仍具有优良的柔韧性和耐热性。  相似文献   

4.
使用二元酐均苯四甲酸二酐(PMDA)与不同摩尔比例的两种二元胺4,4'-二氨基二苯醚(ODA)和1,3-双(4-氨基苯氧基)苯(TPER)共聚制备了一系列聚酰亚胺(PI)薄膜,并通过乌氏粘度计、X-射线衍射仪(XRD)、环境扫描电镜(SEM)、热失重分析(TGA)对其性能进行了分析表征.结果表明,TPER的引入使PI薄...  相似文献   

5.
将4-苯乙炔苯酐(4-PEPA)和3,3',4,4'-二苯醚四酸二酐(ODPA),与3,4'-二氨基二苯醚(3,4'-ODA)和1,4-双(4'-氨基-2'-三氟甲基苯氧基)苯(BTPB)或1,3-双(4-氨基苯氧基)苯(1,3,4-APB)混合物通过高温缩合聚合反应合成了两种苯乙炔苯酐封端的聚酰亚胺低聚物PI-1和PI-2,对其熔体黏度、热行为及固化物的热性能等进行了研究.实验表明,PI-1和PI-2低聚物在280℃时具有低的熔体黏度(<1 Pa·s)和良好的熔体黏度稳定性;经371℃固化后形成的纯树脂固化物具有优异的耐热性能,5%热失重温度超过520℃,Tg超过330℃,有望成为适用于RTM工艺的复合材料基体树脂.  相似文献   

6.
以3,3’,4,4’ -联苯四酸二酐(BPDA)和含咪唑环的芳香族二胺,2-(4-氨基苯基) -5-氨基苯并
咪唑(4-APBI)或2-(3-氨基苯基) -5-氨基苯并咪唑(3-APBI) 为聚合单体,以八( 氨基苯基) 聚倍半硅氧烷
(OAPS)为交联剂,采用超临界CO2 干燥工艺制备了两种PI 气凝胶,PIA-1(BPDA/4-APBI/ OAPS) 与PIA-2
(BPDA/3-APBI/ OAPS)。研究表明,制备的PI 气凝胶具有纳米串珠状的微观结构,其泡孔最可几孔径分别为
22 nm(PIA-1)与14 nm(PIA-2)。PIA-1 与PIA-2 的密度分别为0. 105 和0. 080 g/ cm3,BET 表面积分别为
693 和302 m2 / g。此外,制备的PI 气凝胶具有良好的柔韧性与耐热稳定性,Tg 超过了350℃,T5
d 超过了530℃。  相似文献   

7.
苯乙炔基封端PMR型聚酰亚胺树脂的制备与性能研究   总被引:1,自引:0,他引:1  
使用2,3,3',4'-联苯四酸二酐、对苯二胺和反应性封端剂4-苯乙炔苯酐,采用单体原位反应聚合法制备了设计分子量为1500的PMR型聚酰亚胺树脂PEPA-15.PEPA-15树脂溶液具有良好的室温储存稳定性,我们使用AR-2000流变仪对树脂的熔体加工性能进行了初步测试,树脂经过371℃固化后显示了优异的热稳定性,T300碳纤维增强的复合材料经371℃后固化后在动态热机械分析测试(DMA)中在450℃前储能模量没有明显变化.  相似文献   

8.
聚酰亚胺胶粘剂的粘接性能   总被引:1,自引:0,他引:1  
 采用等摩尔的酮酐(BTDA)和醚胺(ODA)在N,N 二甲基甲酰胺(DMF)中合成了线形缩聚型聚酰胺酸(PAA),并用红外光谱对其结构进行了表征,用TGA对其热关环亚胺化后进行了分析,结果表明其热分解温度可达600 ℃,所成薄膜具有良好的韧性。同时采用纳迪克酸酐(NA)为封端剂,通过调整NA/BTDA/ODA的比例,合成了不同分子量的PAA预聚体,并用红外光谱对其结构进行了表征,对其热关环亚胺化后进行差热分析,表明其端基交联固化温度为350 ℃左右,且随着分子量的提高峰温向高温方向移动。TGA表明,热固性聚酰亚胺(PI)交联固化后的热分解温度为483 ℃左右。采用上述线形缩聚型PAA与热固性PI共混,将固化后线形缩聚型PI的韧性与热固性PI高温性能结合起来,直接用做耐高温胶粘剂,可以获得较高的室温和高温剪切强度,并具有良好的高温热老化性能。  相似文献   

9.
采用低温磁控溅射技术在有机玻璃(聚甲基丙烯酸甲酯PMMA)表面制备铝掺杂氧化锌(AZO)叠层AZO/Ag/AZO透明导电薄膜,研究AZO溅射功率对AZO/Ag/AZO薄膜结构和性能的影响,探讨PMMA层合结构的耐湿热性和加温性能。通过扫描电子显微镜(SEM)、原子力显微镜(AFM)、X射线衍射仪(XRD)表征薄膜的形貌和结构。结果表明:AZO的溅射功率影响了AZO层表面能以及薄膜的结晶度,在100 W和150 W溅射功率下制备出的AZO/Ag/AZO薄膜室温下具有3.7Ω/sq的低薄膜电阻和86.1%的高透光率,采用PMMA和聚氨酯胶片对薄膜进行层合封装,湿热30天后仍保持光学、电学性能稳定。PMMA层合结构在加温过程中的时间-温度曲线表明在5 V直流电压下层合玻璃具有较快的温度响应时间和良好的温度均匀性。-10~-40℃空气对流中PMMA层合结构表现出良好的温度稳定性。  相似文献   

10.
适用于RTM成型聚酰亚胺树脂的合成与性能研究   总被引:7,自引:1,他引:7  
使用4-苯乙炔苯酐(4-PEPA),2,3,3′4′-联苯四酸二酐(a-BPDA),1,4-双(4′-氨基-2′-三氟甲基苯氧基)苯(BTPB)和1,4-对苯二胺(p-PDA)合成了两种苯乙炔苯酐封端的聚酰亚胺低聚物PI-1和PI-2,并对低聚物的熔体粘度稳定性和热性能等进行系统研究.实验结果表明:采用热亚胺化方法制备的低聚物具有很高的产率(>99%);PI-1低聚物在280℃时表现出低的熔体粘度(<1Pa.s)和良好的熔体粘度稳定性,可用于RTM成型工艺制备树脂基复合材料;PI-1和PI-2低聚物经371℃固化后显示了优异的热性能,玻璃化转变温度超过400℃(DMA法,tanδ值),5%热失重温度超过520℃.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号