首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 203 毫秒
1.
靳广虎  高鹏  周镇宇 《航空动力学报》2020,35(10):2104-2114
为改善面齿轮-圆柱齿轮两次载荷分流传动构型的均载特性,考虑齿轮的中心偏移、轴与轴承的承载变形等因素,依据构型的变形协调条件和力矩平衡方程,建立了传动构型的静力学模型,研究了轴的扭转和支撑刚度对均载特性的影响。结果表明:输入轴扭转刚度对均载特性几乎没有影响;分扭轴扭转刚度取合适的比值,则面齿轮分扭传动级可获得较好的均载特性,但圆柱齿轮分扭传动的均载特性几乎无变化;减小双联齿轮轴扭转刚度或增加双联轴支撑刚度可提高该构型的均载特性。因此,为提高该传动构型的均载特性,轴的扭转刚度和支撑刚度需采用参数匹配的设计方法。  相似文献   

2.
靳广虎  任薇  朱如鹏 《航空动力学报》2019,34(11):2478-2489
考虑齿侧间隙、齿轮副间的时变啮合刚度、齿轮偏心误差、轴的扭转以及支撑刚度等,构建了面齿轮-圆柱齿轮两次功率分流传动的动力学模型。利用传动构型的力封闭特点以及将轴的扭转角位移当量转化成线位移的方法,消除了系统方程中的刚体位移。采用Runge-Kutta数值仿真法求解了动力学方程,获得了传动系统的均载系数,并研究了各传动轴扭转刚度对均载系数的影响。结果表明:输入、输出轴的扭转刚度对系统各传动级均载特性几乎没有影响;均载系数对左、右分扭轴和双联轴的扭转刚度较敏感。在双联轴满足强度要求且扭转刚度取较小值时,左、右分扭轴扭转刚度的合理匹配可进一步提高系统的动力学均载特性。   相似文献   

3.
为提高分扭传动系统的均载特性,通过构建误差、载荷的分析图,剖析了影响均载性能的机理;考虑支撑刚度、扭转刚度以及齿轮副的时变啮合刚度,采用集中质量法建立了传动系统的动力学模型。通过龙格库塔法求解传动系统动力学模型,计算了传动系统的均载系数;运用正交试验法获得了齿侧间隙、中心距误差对均载特性的影响规律和权重。研究结果表明:齿侧间隙具有相关性,其取值应满足一定的规则;中心距误差无相关性,并车级中心距误差对均载和动载荷系数的影响权重较大。因此,为提高分扭传动构型的均载特性,齿侧间隙、中心距误差需采用参数匹配的设计方法。  相似文献   

4.
建立了双输入圆柱齿轮分流传动系统的弯扭耦合动力学模型,模型中考虑了各齿轮副间的时变啮合刚度、齿侧间隙、啮合误差、啮合阻尼等因素.结合闭环结构特点,利用齿轮啮合线的相对位移和传动轴扭转位移消除方程中的刚体位移.采用4阶Runge-Kutta法求解系统动力学方程,获得了系统均载系数.结果表明:系统均载系数受输入轴扭转刚度影响小;分流级和并车级均载系数对双联齿轮轴的扭转刚度敏感,减小双联齿轮轴的扭转刚度可以改善系统的均载性能,当双联齿轮轴的扭转刚度小于1.1×105(N·m)/rad时,可将系统均载系数控制在1.06以内;输出轴扭转刚度的变化对分流级和并车级均载系数基本没有影响.   相似文献   

5.
参数对二分支斜齿轮传动动载和均载特性影响   总被引:3,自引:3,他引:0  
采用集总质量法建立二分支斜齿轮传动系统的动力学模型及动力学方程,考虑轮齿啮合偏差和时变啮合刚度等激励因素,研究分别在不同支承刚度和不同分扭角度情况下,传动系统的动载系数和均载系数的变化规律,得出如下结论:①较大的支承刚度有利于改善传动系统的均载特性和运转平稳性,在16倍初始支承刚度下系统的均载特性已趋近于理想情况;②二分支斜齿轮传动系统的分扭角度对其动载系数和均载系数有较大影响,在分扭角度为110°时系统的均载特性最优;③即使1μm的轮齿啮合偏差也会对系统的均载特性产生较大不良影响,应严格控制.   相似文献   

6.
作为下一代民用航空发动机主要发展方向之一的齿轮传动涡扇发动机(GTF),其引入了星型齿轮传动系统,为探究安装误差对星型齿轮传动系统均载特性的影响规律,基于商用软件建立GTF星型齿轮传动系统刚柔耦合动力学模型,以均载系数为考查指标进行仿真分析。分别考虑太阳轮、齿圈安装误差对系统的影响,并引入柔性支撑刚度改善载荷分配不均的问题,系统地分析其影响规律。结果表明:在健康工况条件下,各啮合副接触力分布均匀,系统的均载特性良好;随着安装误差的增大,均载系数呈增大趋势,内、外啮合副均载系数较健康工况下的最多增大了21.1%和21.4%,系统的均载特性变差;通过添加柔性支撑并调整支撑刚度,内、外啮合副的均载系数减小到1.00952和1.00187,系统均载特性趋于合理,基本改善了载荷分配不均的问题。  相似文献   

7.
考虑了行星架微位移、时变啮合刚度、旋转阻尼和构件自重,建立了行星传动系统动力学微分方程.利用多领域工程系统建模、分析与优化语言Modelica进行求解,分析了各主要构件支撑刚度对行星传动系统均载特性的影响.研究结果表明:刚性支撑条件下,较小的系统误差都将引起行星轮间载荷分配严重不均匀.一个或者多个构件的支撑刚度小于107N/m时系统能获得较好的均载效果.在构件支撑刚度敏感区间,随着该构件支撑刚度的增大,系统均载性能将迅速恶化.多个构件支撑刚度减小时,系统的均载效果比单个构件支撑刚度减小要好.改变其中某个行星轮的支撑刚度会使载荷在行星轮间重新分配,降低某个行星轮的支撑刚度,其分配的载荷减小.   相似文献   

8.
基于集中参数理论,建立了封闭差动人字齿轮传动系统动力学模型,模型中考虑了支撑的弹性变形、啮合齿轮副的时变啮合刚度激励、误差激励以及中间浮动构件的影响.引入斜齿轮啮合刚度公式按并联方式计算了人字齿时变啮合刚度,采用傅里叶级数法求解系统动力学方程,获得了系统动态均载系数,分析了偏心与齿频误差对系统均载特性的影响.研究结果表明:差动级均载系数对齿频误差敏感,随齿频误差的增加而增大,均载系数基本不受偏心误差的影响;封闭级均载系数对偏心误差敏感,随偏心误差的增加而增大,均载系数基本不受齿频误差的影响;齿频误差对差动级均载系数的影响比偏心误差对封闭级均载系数的影响大,差动级均载系数大于封闭级均载系数.   相似文献   

9.
齿轮减速器系统可变固有特性动力学研究   总被引:7,自引:1,他引:6  
考虑到齿轮传动啮合刚度的波动和传动误差的影响以及轴承支撑刚度的作用,对二级齿轮减速器传动系统进行了理论建模和动态响应分析,并与实验结果进行了比较。结果表明,齿轮传动在单齿啮合区和双齿啮合区之间啮合刚度变化较大;减速器系统的动态特性 (固有频率、固有振型、阻尼等 )随啮合周期而发生变化,呈现出一种可变的动态固有特性。故对于系统进行研究时,可分别按单齿区和双齿区平均啮合刚度进行分析,一般可以满足实际工程要求。  相似文献   

10.
以同轴六分支分扭人字齿轮传动系统为研究对象,依据各齿轮受力状态建立该系统的静力平衡方程。考虑到制造误差和安装误差及输入输出轮浮动导致的错位,基于当量啮合误差理论,分析误差的存在性,最后根据系统功率闭环特征建立系统变形协调方程,形成了同轴六分支人字齿轮传动系统静均载分析方法,并结合实例求出系统各齿轮之间静均载系数及分支静均载系数。研究结果表明:在无误差或各齿轮误差均相同为常值时,第Ⅰ级各齿轮静态啮合力为1.773×105 N,第Ⅱ级各齿轮静态啮合力为3.673×105 N,系统具有很好静均载性能,系统分支静均载系数为1,该系统构成功率闭环误差可相互抵消;制造和安装误差幅值同时作用为50 μm时,求得制造误差下分支静均载系数变化幅度比安装误差下分支静均载系数要大,可知制造误差对系统静均载性能影响程度要大;分扭和并车误差幅值同时作用为50 μm时,并车级比分扭级静均载性能更容易受误差的影响,因此输出构件应该有浮动量。综上所述,随制造或安装误差增大或减少,都会对系统静均载性能造成不良的影响,其研究成果可为同轴减速器传动系统制造误差和安装误差精度确定,均载系数确定提供科学依据。   相似文献   

11.
基于FA-NSGA分扭传动系统的均载和轻量化优化设计   总被引:5,自引:3,他引:2  
以提高均载性能和轻量化为目标对某分扭传动系统进行了多目标优化设计.建立了分扭传动的非线性动力学模型,通过计算不同输入功率和输入转速下的均载系数,衡量分扭传动系统均载性能.以分扭传动系统参数为设计变量,考虑多工况条件,建立了以均载系数和质量最小为目标函数的多目标优化模型.为了提高计算效率,提出了具有适应值预测机制的非支配排序遗传算法(FA-NSGA).利用3个基准函数对FA-NSGA进行收敛性和有效性的测试.结果表明:FA-NSGA对于3个测试函数均能获得满意的最优解,并且都能减少60%以上的真实适应值计算次数.采用FA-NSGA对实例进行优化求解,在得到的Pareto最优解中选取了一组满意的设计参数,该设计结果与参照方案相比均载系数降低了0.05,分扭传动系统质量减少了3.57kg.   相似文献   

12.
多激励下某直升机传动系统动载特性   总被引:2,自引:2,他引:0  
针对由弧齿锥齿轮和行星轮系构成的直升机传动系统,构建了纯扭振动模型,采用集中参数法建立了齿侧间隙非线性动力学方程.通过有限元方法求得了时变啮合刚度,采用4-5阶变步长Runge-Kutta法对动力学方程进行了数值求解,借助动载系数、相图、Poincaré截面图、快速傅里叶变换频谱图等分析手段,研究了传动系统在时变啮合刚度、齿侧间隙、综合传动误差、外载荷等多种激励作用下系统的动载特性.结果表明啮合刚度对传动系统的影响最大,动载系数最大值为1.5;齿侧间隙对系统响应特性的影响是有限的;啮合误差在一定程度上抑制了齿轮系统的振动;外载荷波动对不同速级的影响不同,动载系数最大值发生在并车传动.  相似文献   

13.
针对双路功率分流系统的载荷均匀分布问题,建立了该系统的静力学模型,并根据系统构成功率流动闭环的特点,推导出扭转角变形协调条件,将该条件联立力矩平衡条件和弹性支承条件,计算出了各齿轮副传递的扭矩,得到系统的均载系数.从静力学角度分析了各构件安装误差和均载特性的关系,并分析了间隙浮动对均载特性的影响.结果表明:齿轮2存在安装误差为0.03mm的情况下,间隙量为0.8mm即可满足基本构件浮动,得到均载系数为1.0038,间隙浮动有利于提高均载性能.对比实验和理论分析的结果,同一误差条件下,功率分配分别为53.88%和53.50%,从而验证了该方法的正确性.   相似文献   

14.
行星齿轮系统载荷分配行为机理及影响因素分析   总被引:1,自引:1,他引:0  
将中心构件轴承弹性变形和太阳轮-行星轮-内齿圈支路的弹性变形分别集中在行星架轴承和行星轮轴承中心得到行星齿轮系统的等效模型,并采用行星架刚体运动来模拟行星齿轮系统的载荷分配行为,从而得到行星齿轮系统的载荷分配求解模型.在此基础上得到了载荷分配与轴承等效刚度、各种误差之间的定量关系,分析了各种影响因素对载荷分配的影响规律.结果表明:当行星架轴承与行星轮轴承的等效刚度相差2个数量级以上时,载荷分配只与行星轮轴承等效刚度和行星轮切向位置误差有关,减小行星轮切向位置误差和行星轮轴承等效刚度可实现均载;行星轮和太阳轮偏心误差使系统受到周期性激励,动态载荷系数增大,因此减小行星轮和太阳轮偏心误差可实现动态均载.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号