首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 969 毫秒
1.
以航空发动机燃油系统为研究对象,简要介绍了燃油系统的工作原理,建立了燃油系统主要组成单元计量活门、电液伺服阀、等差活门的数学模型。并在Matlab/Simulink环境下,构建了整个燃油系统的仿真模型。通过在试验器上进行的燃油系统与电子控制器的联合调试试验,对仿真结果进行验证。仿真与试验结果的对比表明:所建模型的仿真结果与试验结果吻合较好,基本符合设计要求,能反应燃油系统的实际工作情况。  相似文献   

2.
为了模拟航空发动机电子控制器的结构和功能,根据1种典型的民用涡扇发动机数字电子控制器的硬件结构和工作原理,采用基于面向对象的建模方法,为航空发动机数控系统仿真平台FADEC Works搭建了数字电子控制器部件仿真类库,利用数字电子控制器部件仿真类库建立了双通道数字电子控制器模型,在FADEC Works仿真平台上与发动机模型进行了集成,构成了航空发动机闭环数控系统,并对搭建的双通道数字电子控制器模型进行了仿真和验证。结果表明:利用数字电子控制器部件仿真类库搭建的数字电子控制器模型能够模拟数字电子控制器的运行过程。该模型可应用于控制运行逻辑、故障诊断逻辑、通道切换逻辑的开发、集成、测试和验证。  相似文献   

3.
微型涡轮发动机控制系统仿真及台架试验   总被引:1,自引:0,他引:1       下载免费PDF全文
张天宏  黄向华  曹谦 《推进技术》2006,27(5):445-449
在某微型涡轮发动机控制系统开发过程中,为研究该发动机控制规律,提出一种半物理仿真和台架试验结合的研究方法。设计了包含电子控制器在回路的半物理仿真试验,通过分析原控制逻辑以及起动过程存在的问题,提出对起动控制规律的改进和优化,开展了基于原配电子控制单元和工控机的台架试验,验证了优化后的控制规律,并将其应用于控制器开发。本文提出的方法可避免大量的实物台架试验,缩短控制器的研制周期。  相似文献   

4.
航天机电伺服系统是一个高阶、非线性、强耦合的多变量系统。针对机电伺服系统单一仿真平台存在的仿真精度低以及多学科协同仿真存在的仿真效率低等问题,提出了在Simplorer的软件平台下建立功率变换部分的电力电子仿真模型,通过有限元分析和试验的方法确定电机和模拟负载装置的非线性参数特性曲线,实现电力电子、控制和电磁场的多学科协同仿真与虚拟试验。仿真与试验结果表明,所建立的协同仿真模型与试验结果的最大误差不超过15%,可提升机电伺服系统的参数优化设计能力和算法调试效率。  相似文献   

5.
为研究某航空发动机辅助动力装置涡轮盘在预定转速范围内破裂后涡轮机匣的包容能力,在高速旋转试验器上进行了涡轮机匣的包容性试验.试验采用轮盘周向3个对称位置预制裂纹的方式,使轮盘在预定转速范围内破裂成均匀3块,得到了轮盘碎块撞击涡轮机匣的高速摄影照片.试验结果表明轮盘碎块击穿机匣撞击包容环,包容环发生大塑性变形,包住轮盘碎块.采用LS-DYNA软件对涡轮机匣包容性进行数值仿真,仿真结果与试验结果吻合良好,研究结果对航空发动机轮盘包容性设计有一定的参考价值.   相似文献   

6.
以第4代战斗机的动力装置--高推重比发动机为控制对象,攻克了多项全权限数控系统的术,完成了高推重比发动机数控系统总体方案设计和多变量控制技术的工程化研究,适合多变量控制、轻质量、小体积的电子控制器和轻质量、小体积的机械液压装置的研制,以及高推重比发动机全权限数控系统的半物理仿真试验.  相似文献   

7.
立式主轴综合加载疲劳试验器4BSQ32就是用来确定涡喷和涡桨发动机主轴疲劳寿命的试验装置。它是我公司在臥式涡轮轴试验器4BSQ7长期使用经验的基础上设计的。它通过外载荷模拟,边界条件模拟及温度模拟可对中型航空涡轮发动机主轴作疲劳寿命试验,包括对该类型双转子主轴进行疲劳寿命试验,也可对同类主轴进行极限静强度,届服强度和刚度验证试验。在试验器设计方案方面,为避免自重引起横向弯矩,采用了立式布置;为克服用偏  相似文献   

8.
针对压气机试验器受转速限制无法满足新型压气机试验的需求,设计了一种置于试验器传动轴系与试验件输入轴之间的增速装置。该增速装置可在压气机全转速范围内稳定运行,并利用隔热、冷却等方式能在试验件高温排气条件下有效保证内部传动组件处于要求工况。在增速装置设计过程中,还利用实体建模和结构仿真分析了箱体的受力变形和应力,从理论上确保了箱体设计安全可行。试验调试过程中,该增速装置运行良好,传动平稳,满足试验要求。  相似文献   

9.
涡轮效率改变对发动机加速特性的影响   总被引:3,自引:1,他引:3       下载免费PDF全文
采用零维闭环数值仿真平台,对某型单轴涡轮喷气发动机进行启动加速过程的零维闭环仿真,通过选择三种不同的调节方式,研究了涡轮效率的改变对发动机的转速、推力和耗油率等发动机特性的影响,其中某些结果与实验数据进行了比较。  相似文献   

10.
构建了UH-60A直升机六自由度非定常、非线性气动力模型以及完整的直升机/涡轴发动机非线性综合仿真模型。使用增广LQR方法设计了直升机飞行控制器,包线内大量仿真结果及与 控制器效果的对比表明该控制器解耦性能、指令跟踪性能优越,鲁棒性强。此外,该控制器设计过程简单和调参方便。借助上述综合仿真模型研究了发动机闭环系统与直升机的功率匹配关系,数字仿真表明,发动机能够满足直升机机常规飞行任务下的功率需求,功率涡轮转速下垂量满足直升机飞行操纵品质规范(ADS-33E)的要求。  相似文献   

11.
A New Hybrid Control Scheme for an Integrated Helicopter and Engine System   总被引:1,自引:1,他引:0  
A new hybrid control scheme is presented with a robust multiple model fusion control(RMMFC) law for a UH-60 helicopter and an active disturbance rejection control(ADRC) controller for its engines.This scheme is a control design method with every subsystem designed separately but fully considering the couplings between them.With three subspaces with respect to forward flight velocity,a RMMFC is proposed to devise a four-loop reference signal tracing control for the helicopter,which escapes the closed-loop system from unstable state due to the extreme complexity of this integrated nonlinear system.The engines are controlled by the proposed ADRC decoupling controller,which fully takes advantage of a good compensation ability for unmodeled dynamics and extra disturbances,so as to compensate torque disturbance in power turbine speed loop.By simulating a forward acceleration flight task,the RMMFC for the helicopter is validated.It is apparent that the integrated helicopter and engine system(IHES) has much better dynamic performance under the new control scheme.Especially in the switching process,the large transient is significantly weakened,and smooth transition among candidate controllers is achieved.Over the entire simulation task,the droop of power turbine speed with the proposed ADRC controller is significantly slighter than with the conventional PID controller,and the response time of the former is much faster than the latter.By simulating a rapid climb and descent flight task,the results also show the feasibility for the application of the proposed multiple model fusion control.Although there is aggressive power demand in this maneuver,the droop of power turbine speed with an ADRC controller is smaller than using a PID controller.The control performance for helicopter and engine is enhanced by adopting this hybrid control scheme,and simulation results in other envelope state give proofs of robustness for this new scheme.  相似文献   

12.
开放式电子控制器具有模块化程度高、可靠性好、维护方便、全寿命周期成本低等特点,是未来航空发动机电子控制器的发展方向之一。基于自主开发的TTP/C总线构建了1个拥有3个智能节点的开放式电子控制器,实现了主机控制器与TTP/C总线控制器的接口设计,以及转速信号和油针位置信号的采集及其闭环控制和转速闭环控制功能,利用FADEC系统接口模拟器开展了HIL仿真试验研究。研究表明:基于TTP/C总线构建的开放式电子控制器的各智能节点能协调可靠地实现发动机的控制功能,同时具有实时性好、安全性高、开发维护方便等特点。  相似文献   

13.
王曦 《航空发动机》2004,30(3):36-39
进行了某型涡喷发动机数字电子控制器系统设计 ,执行机构采用了步进电机细分的驱动方案。分析和给出了涡喷发动机转速、压力、温度信号的采集过程以及起动控制箱、机械供油装置的接口电路 ,基于ITAE准则设计了PID控制器 ,并在发动机控制系统动态模拟试验台上进行了仿真验证  相似文献   

14.
以直升机为被控对象,应用LQR技术设计了三轴稳定鲁棒控制器.以直升机模型、执行器模型以及设计的三轴稳定控制器构成全数字闭环仿真系统进行仿真,并将所设计的鲁棒控制器编制鲁棒实时飞行控制律软件加载至飞行控制计算机,在实际地面仿真环境下进行了较为全面的地面联试.仿真结果表明,所设计的鲁棒控制器正确有效,并为其进一步应用于实际飞行控制系统打下了坚实基础.  相似文献   

15.
提出了一种包含风剪塔影效应的风力发电系统的改进型模拟方案。以背靠背三相变流器平台为基础,建立了考虑包含风剪塔影效应的虚拟永磁直驱风力发电系统的数学模型,进而搭建其控制系统;针对简化叶尖速比与转矩系数拟合的问题,提出了一种基于Kalman滤波的分段线性拟合的方法来简化拟合方程;利用MATLAB/Simulink仿真软件搭建虚拟风力发电系统模拟平台,对负载变化时的模拟平台输出以及有无风剪塔影效应时风力机的机械转矩变化进行仿真分析。仿真结果表明,该平台能够较好地模拟出风力机发电机组地运行特性。  相似文献   

16.
基于某型航牢发动机的综合控制系统试验平台设计   总被引:1,自引:0,他引:1       下载免费PDF全文
针对多数半物理仿真试验平台系统的结构简单、功能单一、无法模拟控制系统在发动机上真实工作的情况,设计了基于真实外部管路的控制系统综合半物理试验平台,对试验平台的重要环节进行了建模和仿真分析,并进行调试试验。测试结果表明:半物理仿真试验平台可满足控制系统综合试验的性能调试、功能验证和故障复现等要求,对某型航空发动机控制系统的研制具有重要指导意义。  相似文献   

17.
基于内模原理设计了涡轴发动机功率涡轮转速控制器.针对主旋翼扭矩变化对功率涡轮转速的干扰,提出了一种基于极端学习机的扭矩预测方法.极端学习机训练基于动态仿真数据,其输入通过相关分析获得.基于内模原理的功率涡轮转速控制器采用极点配置的设计方法,将输入信号的内模直接加入控制器,实现鲁棒跟踪.扭矩前馈采用比例微分(PD)控制策略,实现对发动机负载变化干扰的有效补偿.数字仿真结果表明:极端学习机扭矩预测精度高,扭矩相对误差小于1.5‰,与不加前馈控制相比,所提出的控制方法减小了机动飞行过程中功率涡轮转速的超调或下垂30%以上.   相似文献   

18.
综合现有软硬件资源,采用模块化方法设计了航空发动机数字电子控制系统综合仿真平台,其框架主要包括发动机模型系统、传感器信号模拟与处理、控制器快速原型等子系统.发动机模型系统采用集成仿真环境调用液压执行装置和发动机数学模型库方式设计;快速原型系统采用Matlab/Simulink环境下将控制程序封装成S-Function的方法设计;软件设计重点描述了混合编程与定时器编程技术.以某双轴涡扇发动机为应用对象,进行控制系统数字仿真、半物理模拟试验和台架试车,在相同控制参数下,仿真试验与台架试车结果相似,表明所设计综合仿真平台具有工程应用价值.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号