首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
压电陶瓷驱动电源及其在激光陀螺扫模中的应用   总被引:3,自引:0,他引:3  
对压电陶瓷微位移器驱动电源与环形激光陀螺腔长调节原理进行了分析 ,在此基础上 ,设计了微机控制 0~ 30 0 V电压连续可调压电晶体驱动电源 ,并将其应用于自行设计的环形激光陀螺自动扫模系统。实验获得的扫模曲线表明 ,该驱动电源能够满足环形激光陀螺扫模系统的要求  相似文献   

2.
一种新型压电陶瓷驱动器电源设计   总被引:3,自引:0,他引:3  
设计并研制了一种新型压电陶瓷驱动电源。该电源采用高压直流放大器加功率放大器原理,具有良好的动态响应性能,能很好地满足微细电火花加工的伺服要求。  相似文献   

3.
针对FTS快速刀具伺服系统驱动元件,研究了压电陶瓷电机的静态特性和动态特性,并对其进行了试验研究,选用峰值功率大的电源放大器,可以有效缩短PZT电容的充放电时间,提高响应速度。  相似文献   

4.
分析了柔性铰链及压电陶瓷的原理和特点,指出了压电陶瓷-柔性铰链机构在微进给中具有高响应频率、高精度和无间隙等优点,满足微细电火花加工的要求。并将压电陶瓷与整体式柔性铰链相结合,设计出一种压电驱动蠕动式微进给机构。  相似文献   

5.
以复合式隔离的双端正激功率变换电路为基础研制了激波发生器激励电源,分析了电路的主要工作原理,并用 Pspice 进行了仿真分析,最后实验结果表明本方案的正确性与可行性,对压电陶瓷的激励效果好,电源效率较高。  相似文献   

6.
基于PLZT的RAINBOW陶瓷的特性及其微观结构   总被引:7,自引:0,他引:7  
RAINBOW陶瓷是一种具有内部应力偏移 ,并具有特殊的拱形结构的大位移驱动材料 ,它是通过将普通的压电陶瓷在高温下化学还原制备所得。实验表明 ,PLZT压电陶瓷具有较好的还原性能 ,还原层厚度与时间有线性关系 ,理想的还原条件为 :95 0℃保温 1~ 1 5h ;电镜照片显示RAINBOW陶瓷有明显的分层结构 ,还原层表现出穿晶断裂而未还原层则是沿晶断裂的特征。XRD谱发现还原层主要由金属Pb及PbO ,ZrO2 ,ZrTiO4等氧化物组成 ,原先的晶体结构已不存在 ;还原机制的理论分析与实验结果一致  相似文献   

7.
使用“大范围纳米测量机”进行扫描测量时,要求被测样品的空间姿态相对测量坐标系稳定,因此需要样品姿态小范围内动态可调。本文提供一种姿态可调的一维运动平台解决方案:利用四个压电陶瓷电机驱动空间上均布的四个丝杠,通过柔性连接器共同推动运动平台。压电陶瓷电机的协调运动可以实现运动平台的大范围升降运动及小范围姿态调整,其自保持能力可以减小驱动部件发热对纳米级测量的影响;四点过定位支撑利于简化控制模型,还可提高工作台的稳定性。  相似文献   

8.
1 构成如图 1所示 ,通用计数器芯片 5 G72 1 6 B构成一频率计电路。测量范围为 1 0~ 5 0 0 Hz,测量不确定度为 0 .1 %。1 )工作电源电压选用 5 V;图  1   2 )直接选用 1 0 MHz晶体构成稳定时钟振荡 ;3)管脚 3~ 6位输出直接驱动 L C5 0 1 2 -1 1显示器的位 (D) ;4)管脚 1 5~ 1 7、1 9~ 2 3、输出直接驱动L C5 0 1 2 -1 1显示器的段 ;5 )频率计数选用闸门时间为 1 0 s;6 )管脚 1、2 7之间的联接完成保持功能 ;7)管脚 1 2为“复位”控制输入端 ;8) 5 G72 1 6 B设有外小数点选控功能 ,因此用位输出驱动显示器 ,用晶体管的集电极驱…  相似文献   

9.
李敏  陈伟民  贾丽杰 《航空学报》2010,31(2):418-425
压电纤维复合材料驱动器在形状控制、振动控制、颤振抑制与抖振控制等方面有广泛的应用前景。首先简单介绍了压电应变驱动的比拟载荷方法,并采用该方法讨论了压电陶瓷片状驱动器与压电纤维复合材料驱动器在驱动特性上的主要差异。在此基础上,对压电纤维复合材料在不同铺设方式、铺设角度与铺设层数下的驱动特性进行了分析,在刚度影响方面展示了不同铺设角度下模型刚轴的移动。分析结果表明:对称铺设反向电场可以同时获得弯曲与扭转变形,而反对称铺设同向电场主要获得扭转变形;两种铺设方式下45°铺设角均获得最大弦向转角,而0°铺设角将获得最大挠度;多铺层可以增加驱动载荷,但总体变形效果还取决于结构系统的刚度比例;对称铺设方式下铺设角对结构刚轴移动的影响非常明显,在气动弹性控制中应着重关注。  相似文献   

10.
压电陶瓷在发动机推力测量中的应用研究   总被引:2,自引:0,他引:2       下载免费PDF全文
在发动机推力测量系统的原位校准中,运用了压电陶瓷驱动装置准确快速控制力值的方法,研制了原位校准自动化装置。该装置借助微机和自动控制技术,通过控制作用于压电陶瓷驱动装置上的电场强度改变其输出位移,达到精确控制力值的目的,实现原位校准自动化。试验结果表明,该装置可实现手动、半自动和全自动三种控制方式进行原位校准,加值准确度高,适用于所有喷气动力发动机的推力测量。  相似文献   

11.
大功率电动机软起动技术及其应用   总被引:2,自引:0,他引:2  
本文介绍了几种适用于大功率电动机起动的软起动装置的工作原理,对其技术、经济性进行了比较,探讨了软起动装置在大型设施中应用的可行性.  相似文献   

12.
辅助动力装置是保证飞机运行安全的重要组成部分。针对高高原机场的特殊性,分析了拉萨贡嘎机场一起APU运行故障,并就APU在高高原机场运行条件下的使用经验进行了探讨,为同行提供参考和借鉴。  相似文献   

13.
基于SVPWM的高功率因数整流器研究   总被引:1,自引:0,他引:1       下载免费PDF全文
介绍了三相电压型PWM整流器的数学模型和空间矢量PWM(SVPWM)控制技术,并根据设计要求完成了主电路中相关参数的设计。实验发现,采用SVPWM电流控制技术能够使网侧电压与电流同相位,表明电压型PWM整流器实现了高功率因数整流。  相似文献   

14.
选取国内常用的两种树脂与环氧酸酐浸渍树脂作对比测试。通过对树脂常规性能及浸渍模拟线圈电性能测试,得出结论:1号树脂具有较好的储存稳定性,电性能与环氧酸酐相当,可作为环氧酸酐的替代品。  相似文献   

15.
1553B总线在现代飞机自动配电系统中的应用   总被引:2,自引:0,他引:2  
对1553B总线通讯技术进行了系统的研究。设计了采用80C196KB作为主处理机的1553B通讯接口板,设计并调试成功了1553B的通讯软件,并在双发电通道飞机自动配电系统地面模拟系统中进行了实验。系统模拟实验表明,与通用串行总线(如RS-485总线)相比,军用数据总线1553B有高传输率、高可靠性等特点,为飞机自动配电系统的应用奠定了坚实的基础。  相似文献   

16.
使用电动电源线确保使用电力,它等于几十千瓦。 建议它应该高达10000秒。 Keldysh研究中心(KeRC)正在开发推进系统。 35千瓦离子推进器和FCU-500流量控制单元。 IT-500和FCU-500的2000小时寿命测试是 离子推进器大部分运行2018小时,使用40千克氙气。 本文还介绍了磁场和离子光学的改进以及石墨网格的发展状况。  相似文献   

17.
激波管高温空气绝对辐射功率实验测量   总被引:1,自引:0,他引:1  
利用激波管加热技术,得到1000K~3000K温度范围内的高温空气,利用宽波段能量计、光电探测器以及滤波片等设备,测量出高温空气在0.3μm~9μm宽波段范围内绝对辐射功率,以及中心波长在4.26μm、5.23μm、8.32μm处、单位波长的绝对辐射功率;实验结果表明,在1000K~2000K温度范围内,高温空气宽波段的辐射功率约为60 W/cm~3·MP,且辐射主要集中在21μm~8μm波段范围内;当温度高于2000K以上,辐射功率随着温度的升高增大较快,且辐射向紫外、可见方向移动;在3000K时,高温空气在0.3μm~9μm宽波段范围内的辐射功率约为150W/(cm~3·MP).  相似文献   

18.
黄文新  胡育文 《航空学报》2002,23(4):377-380
 现代电力电子技术的发展使得笼型异步发电机能够适用于航空高压直流系统中。着重对笼型异步电机与电力电子变换器结合构成的发电系统进行了研究,说明了采用直接转矩控制策略可使这种发电系统具有很好的动态特性。介绍了异步发电机直接转矩控制的原理与实现方法,并给出了仿真与实验结果。  相似文献   

19.
针对高功率微波(HPM)耦合效应分析需求,采用时域多分辨分析法(MRTD)模型,给出了微带线端口电压和电流方程,验证了模型的适用性。基于MRTD,仿真分析了HPM作为入射波时其极化方式、入射方向对微带线电磁耦合特性的影响。结果显示:垂直线极化波和平行线极化波耦合系数峰值出现在不同的频率,且峰值相差约15 dB,采用圆极化波时耦合系数最大;入射方向变化时,耦合系数以水平入射最小,垂直入射时最大,高频段微带线边缘有绕射现象产生。该分析采用了分析计算电大尺寸HPM耦合效应的MRTD数学模型,提高了HPM与复杂结构的耦合计算效率。  相似文献   

20.
介绍了大电流充放电电源电流校准装置的组成和工作原理,根据JJF1059-1999《测量不确定度评定与表示》关于不确定度评定的原则,对电流校准的不确定度进行了分析和评定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号