首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 325 毫秒
1.
A coherent train of identical linear FM (LFM) pulses is used extensively in radar because of its good range and Doppler resolution. Its relatively high autocorrelation function (ACF) sidelobes are sometimes reduced through spectrum shaping (e.g., nonlinear FM, or intrapulse weighting on receive). We show how to completely remove most of the ACF sidelobes about the mainlobe peak, without any increase to the mainlobe width, by diversifying the pulses through overlaying them with orthonormal coding. A helpful byproduct of this design is reduced ACF recurrent lobes. The overlaid signal also results in reduced Doppler tolerance, which can be considered as a drawback for some applications. The method is applied to several trains of identical pulses (LFM and others) using several orthonormal codes. The effect on the three important properties of the radar signal: ACF, ambiguity function (AY), and frequency spectrum is presented. The effect on Doppler tolerance is studied, and implementation issues are discussed. The new design is also compared with complementary and sub-complementary pulse trains and is shown to be superior in many aspects.  相似文献   

2.
3.
P(n,k) codes as a new class of polyphase pulse compression codes are introduced and analyzed in detail. The P(n,k) codes are conceptually derived by step approximation of the phase function of a nonlinear-frequency modulated (NLFM) Chirp signal with a favorable energy density spectrum. The significant advantages of P(n,k) codes over conventional polyphase codes are lower autocorrelation sidelobes and an improved tolerance of low Doppler shifts and precompression bandwidth limitations. The primary disadvantage of the P(n,k) codes over conventional codes is a loss in range resolution. The uniform P(n,k) codes are especially attractive for radars employing digital signal professing because their favorable correlation properties also remain when quantization effects are taken into account  相似文献   

4.
A technique is introduced to select poly-phase codes and optimal filters of a pulse compression system that have specific temporal and frequency characteristics. In the particular problem under study, multiple vehicles are assigned unique codes and receiver filters that have nearly orthogonal signatures. Narrowband users, that act as interference, are also present within the system. A code selection algorithm is used to select codes which have low autocorrelation sidelobes and low cross correlation peaks. Optimal mismatched filters are designed for these codes which minimize the peak values in the autocorrelation and the cross correlation functions. An adjustment to the filter design technique produces filters with nulls in their frequency response, in addition to having low correlation peaks. The method produces good codes and filters for a four-user system with length 34 four-phase codes. There is considerable improvement in cross and autocorrelation sidelobe levels over the matched filter case with only a slight decrease in the signal-to-noise ratio (SNR) of the system. The mismatched filter design also allows the design of frequency nulls at any frequency with arbitrary null attenuation, null width, and sidelobe level, at the cost of a slight decrease in processing gain  相似文献   

5.
A method of improving angular discrimination artificially in radar beacon systems, without going to extremely high frequencies of operation or using unreasonably large interrogator antennas, involves the use of a null-type antenna pattern superposed on a normal directional beam. The effective are over which replies are obtained is determined by an amplitude discriminator circuit within the beacon which compares the amplitude of the pulse signals received on the null pattern with those received via the directional beam. Only if the latter exceed the former by a predetermined amount does the beacon produce a reply. The method, which has been tried experimentally and its theory verified, produces an increase in traffic handling capacity, as well as improved angular resolution, by reducing unwanted triggering and, hence, clutter on the display and the over-interrogation of transponder beacons. An antenna is described which eliminates triggering on sidelobes by providing the proper current distribution to the radiating elements to cause the null pattern to cover the sidelobes of the normal beam. Triple-pulse amplitude discriminators have been built and tested in a double-pulse interrogation system. Some theoretical considerations and design curves and equations for use in designing nulltype antennas are given in the Appendix.  相似文献   

6.
It is shown by use of D.A. Huffman's polynomial representation for a finite sequence of contiguous pulses in a pulse train that Barker's binary-coded sequences can be modified, by a weighting of pulse amplitudes, to a condition where time sidelobes in the pulse compressed signal are substantially reduced. In such a pulse amplitude modification there is a sacrifice in pulse train energy since each pulse does not have maximum energy. Results here are provided for Barker's sequence of length 13 only.  相似文献   

7.
Novel waveforms are described that have low sidelobes when individual or multiple waveforms are approximately processed. They are related to orthogonal matrices that may be associated with complementary sequences and also with periodic waveforms having autocorrelation functions with constant zero-amplitude sidelobes. Also described are sets of sequences whose cross-correlation functions sum to zero everywhere. A potential application is the elimination of ambiguous range stationary clutter  相似文献   

8.
The utility of Barker-type phase-reversal codes is extended by the use of sidelobe suppression techniques that can be easily implemented in digital form. It is shown that sidelobe suppression techniques can be found where the tapped delay line used to reduce the sidelobes has only a few distinct tap weights, in which case the complexity of the digital processor is greatly reduced. An example is given where the technique is applied to Barker codes with positive sidelobes, specifically, the 13-element Barker code. If higher pulse compression factors are desired than are obtainable with Barker codes, multistage Barker codes may be used. The sidelobes then may be suppressed for any one or all of the different coding stages.  相似文献   

9.
Digitally coded radar waveforms can be used to obtain large time-bandwidth products (pulse compression ratios). It is demonstrated that periodic radar waveforms with zero sidelobes or almost zero sidelobes can be defined. A perfect periodic code is a periodic code whose autocorrelation function has zero sidelobes and whose amplitude is uniform (maximum power efficiency=1). An asymptotically perfect periodic code has the property that as the number of elements in the code goes to infinity the autocorrelation function of the code has zero sidelobes and its power efficiency is one. The authors introduce a class of radar waveforms that are either perfect or asymptotically perfect codes. These are called reciprocal codes because they can be derived through a linear transformation of known codes. The aperiodic performance of the reciprocal code is examined  相似文献   

10.
In many detection and estimation problems, Doppler frequency shifts are bounded. For clutter or multipath that is uniformly distributed in range and symmetrically distributed in Doppler shift relative to the signal, detectability of a point target or a communication signal is improved by minimizing the weighted volume of the magnitude-squared autoambiguity function. When clutter Doppler shifts are bounded, this volume is in a strip containing the range axis on the range-Doppler plane. For scattering function estimation, e.g., for weather radar, Doppler flow meters, and distributed target classifiers, it is again relevant to minimize ambiguity volume in a strip. Strip volume is minimized by using a pulse train, but such a signal has unacceptably large range sidelobes for most applications. Other waveforms that have relatively small sidelobe level within a strip on the range-Doppler plane, as well as small ambiguity volume in the strip, are obtained. The waveforms are composed of pulse pairs that are phase modulated with Golay complementary codes.  相似文献   

11.
A simple, easy to implement technique is presented that can significantly reduce the range-time-sidelobes of a class of polyphase pulse compression codes. This technique reduces the highest sidelobes to only one code element magnitude independent of effective pulse compression ratio. The codes considered are polyphase codes that are derived from the step-approximation-to-linear-frequency-modulation and linear-frequency-modulation waveforms such as the P1, P3, P4, and the Frank codes. The characteristics of these codes that make this possible are explained  相似文献   

12.
A height-finding technique utilizing the relative phase between a series of point sources of a traveling-wave array is described. The point sources in the focal region of a torus antenna are used to control the phase of the antenna elevation pattern in space. Signals received from a given beam angle will arrive at each terminal of the traveling-wave feed with a different phase. By comparing this phase with a reference phase, the angular direction of an arriving plane wave can be measured with considerable accuracy. Thus a radar system with a single antenna and feed structure can be employed to yield instantaneous height coverage along with the usual range data.  相似文献   

13.
Doppler properties of the Frank polyphase code and the recently derived P1, P2, P3, and P4 polyphase codes are investigated and compared. An approximate 4 dB cyclic variation of the peak compressed signal is shown to occur as the Doppler frequency increases. The troughs in the peak-signal response occur whenever the total phase shift across the uncompressed pulse, due to Doppler, is an odd multiple of ? radians. It is shown that while the P3 and P4 codes have larger zero-Doppler peak sidelobes than the other codes, the P3 and P4 codes degrade less as the Doppler frequency increases. Also, the effects of amplitude weighting and receiver bandlimiting for both zero and nonzero Doppler are investigated.  相似文献   

14.
The matched filter ambiguity function is presented for a burst waveform composed of repeated subbursts, each one of which consists of N pulses in which the phase is varied quadratically from pulse to pulse. The resulting ambiguity function exhibits small residual ambiguities along the delay axis separated by the reciprocal of the pulse repetition frequency (PRF). A cross-ambiguity function is derived which reduces these ambiguities to zero amplitude. A third cross-ambiguity function is presented for a receiver matched to a generalized Hamming weighted repeated quadratic burst. The location in the delay/Doppler plane of the waveform ambiguities for these waveforms is compared with that of an uncoded pulse burst.  相似文献   

15.
A novel range-Doppler imaging algorithm with OFDM radar   总被引:1,自引:1,他引:0  
《中国航空学报》2016,(2):492-501
Traditional pulse Doppler radar estimates the Doppler frequency by taking advantage of Doppler modulation over different pulses and usually it requires a few pulses to estimate the Doppler frequency. In this paper, a novel range-Doppler imaging algorithm based on single pulse with orthogonal frequency division multiplexing(OFDM) radar is proposed, where the OFDM pulse is composed of phase coded symbols. The Doppler frequency is estimated using one single pulse by utilizing Doppler modulation over different symbols, which remarkably increases the data update rate. Besides, it is shown that the range and Doppler estimations are completely independent and the well-known range-Doppler coupling effect does not exist. The effects of target movement on the performances of the proposed algorithm are also discussed and the results show that the algorithm is not sensitive to velocity. Performances of the proposed algorithm as well as comparisons with other range-Doppler algorithms are demonstrated via simulation experiments.  相似文献   

16.
The paper proposes a way to increase the energy within a coherent processing interval (CPI) using more pulses instead of longer pulses. Long coded pulses result in masking targets at close range and poor Doppler tolerance. Increasing the number of pulses implies high pulse repetition frequency (PRF), which suffers from range ambiguity and target folding. These drawbacks of a high PRF can be mitigated by inter-pulse coding. The approach suggested here should be attractive for close and mid range applications of radar, ground penetrating radar, ultrasound imaging, and more.  相似文献   

17.
A high-frequency (HF) active sonar can be used to detect and track a small fast surface watercraft in shallow water based on the evolution of the watercraft wake observed in the sonar image sequence. An automatic detection and tracking (ADT) algorithm is described for this novel application. For each ping, the measurement of the target's polar position consists of 2 steps. First, the target bearing is estimated by finding the direction of arrival of the cavitation noise emitted by the watercraft. Then range measurements are extracted from the range profile (constant-angle cut of the sonar image) at the estimated target bearing. Range normalization and clutter map processing are used to reduce the number of false measurements. Estimates of the target's Cartesian position and velocity are updated at the sonar pulse repetition rate using the Kalman filter with debiased consistent converted measurements and nearest neighbour data association. The proposed algorithm is demonstrated using real data.  相似文献   

18.
A method of constructing digital phase reversal codes which have few nonzero sidelobes and which are available in frequent lengths is given. This is particularly important in the area of longer codes. The codes are a form of combined sequence and, hence, have the desirable property of bandwidth reduction for the outer code. However, only two member codes are required. A major usage of these codes may be in addressing.  相似文献   

19.
Sparse frequency transmit-and-receive waveform design   总被引:2,自引:0,他引:2  
A computationally efficient algorithm derives complex digital transmit and receive ultra-wideband radar and communication waveforms with excellent arbitrary frequency band suppression and range sidelobe minimization. The transmit waveform minimizes a scalar function penalizing weighted spectral energy in arbitrary frequency bands. Near constant power results from another penalty function for deviations from constant power, or constant power is enforced by a phase-only formulation. Next, a least squares solution for the receive waveform minimizes a weighted sum of suppressed band spectral energy and range sidelobes (for pulse and continuous wave operation), with a mainlobe response constraint. Both waveforms are calculated by iterative algorithms whose updates require only linear order in memory and computation, permitting quick calculation of long pulses with thousands of samples.  相似文献   

20.
宫晓琳  房建成 《航空学报》2009,30(12):2348-2353
 针对位置姿态系统(POS)应用中全球定位系统(GPS)野值会降低滤波精度和稳定性的问题,提出将基于新息正交性的Kalman滤波(KF)抗野值法应用于POS数据处理中。该方法首先通过判断KF新息过程的正交性是否丧失来判别GPS的位置和速度数据中是否出现野值,然后采用活化函数对含有野值的量测值进行加权限制,使修正后的新息过程能够保持正交性质,从而达到辨识并修正GPS野值的目的。车载试验结果表明,该方法能够有效辨识并抑制GPS野值对滤波精度和稳定性的不利影响,其在GPS野值点处的位置、速度精度比标准KF提高了1~2个数量级。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号