首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
多测速系统是航天测控网的重要组成部分,通过多站联测可实现外空间飞行目标的高精度测速.以四站联测距离和变化率为对象,建立了测速系统测量数据的两组差分算法和误差传播算子及精度计算公式.任务实测数据计算结果表明,该方法可有效消除跟踪测量过程距离和变化率数据的大部分误差,提高数据处理精度.  相似文献   

2.
基于高精度测速工程需求,就飞行器天线方向图对高精度测速的影响进行分析研究。通过对天线相位方向图不均匀模型的深入研究,定量分析了飞行器天线方向图相位不均匀性对测速精度的影响,有效估计了天线相位不均匀性造成的测速误差量级。  相似文献   

3.
利用多普勒频移观测量,采用双差技术可以确定高精度的测速信息,提出了利用测速信息对定位结果进行误差诊断的方法。应用此方法可以进行数据有效性检验、异常点与跳变系统误差的识别,提高定轨精度;还可以在定位数据有少量超差时对其进行重构。仿真与实测数据处理结果表明,该方法计算简单、精度较高、实用性好。  相似文献   

4.
为了评估单向多普勒测速动态测量精度,构建了一种基于卫星信道模拟器的测速精度评估系统,通过在卫星信道模拟器装订卫星飞行轨迹,利用卫星信道模拟器对上行信号加入传播时延、多普勒频率,对卫星在轨飞行状态下的单向多普勒测速进行场景仿真,并对场景仿真获取的测速数据进行O-C残差序列分析,得到动态测量条件下的测速精度。给出了O-C残差序列的计算方法,分析了单向多普勒测速体制下时钟偏差对测速结果的影响,并给出了一种简单的时钟误差修正方法。  相似文献   

5.
对航天器多普勒测速平均误差进行了分析,详细推导了圆轨道和椭圆轨道时该误差的计算公式,计算了不同采样周期和轨道高度时的误差大小。经过分析指出,该项误差对于高轨航天器影响较小,对于低轨航天器可以通过缩短采样周期或利用3个点或多个点的连续测量数据进行修正。  相似文献   

6.
飞机载体的杆臂效应对GPS测速精度的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
杆臂效应是由于测量体的安装位置与运动载体质心不重合而引起的。从理论上分析了杆臂效应产生的原理,推导得出杆臂效应引起的速度误差公式。通过仿真试验和飞行试验数据分析了飞机载体不同运动状态下,杆臂效应对GPS速度测量精度的影响。通过对杆臂误差补偿后,GPS测速精度得到很大提高。在惯导系统飞行试验中引入该方法,可以科学合理地给出系统试飞评定结果。  相似文献   

7.
提出了飞机机体角运动会引起GPS测速误差这-GPS应用中较为精细的技术问题,推演了机体角运动引起的GPS测速误差与GPS天线安装位置,机体角速度和飞机姿态角,航向角的关系,用真实参数演算分析了这种误差的大小,并通过实际工程应用验证了分析这种误差后对提高试飞结果数据的真实性,准确性的效果,最后指出,飞机机体角运动引起的GPS测速误差是GPS用于飞机测速的一项不可忽视的主要误差。  相似文献   

8.
X频段是深空测控的主用频段,其多普勒测速精度远高于S频段,这一结论在"嫦娥二号"任务X频段深空测控技术试验中得到了验证,测速精度约为1mm/s。针对X频段高精度测速,本文分析了目前采用的径向速度近似计算公式,理论分析其产生的误差在地月转移和环月轨道段可达1cm/s。通过"嫦娥二号"任务X频段测控技术试验,以事后精密轨道为基准进行残差分析,结果表明,相比精确公式,近似公式计算测速数据的残差会增加1mm/s,已与X频段测速精度本身相当,因此,多普勒测速近似计算在X频段测量中已不再适用,应使用本文中列出的精确计算公式。  相似文献   

9.
船载多普勒测速数据的修正与实用公式   总被引:1,自引:0,他引:1  
推导了船载多普勒测速数据的精确修正公式,并在对各误差源进行分析的基础上,得到了实用的近似公式,并用实测数据进行了验证。  相似文献   

10.
MISTRAM测距数据包含的常值系统误差,是影响数据质量和精度的主要因素之一。该误差既不便于按常规系统误差处理,更不能按随机误差处理。在设备精度鉴定中,使用更高精度的观测数据通过比对法估计的方法,以及EMBET方法,均受到诸多制约。本文基于MISTRAM系统高精度测速数据,建立了常值系统误差的估计方法。实际数据计算证明,该方法是可行的。  相似文献   

11.
针对高精度测速系统在优化设备时取消探空气象测量的要求,提出用统计大气折射率剖面分段模型代替探空测量剖面,并在此基础上建立了基于分段模型的测速雷达电波折射误差修正方法。利用某测站历史气象数据对该方法进行了验证,结果表明精度较高,基本上能够满足测速雷达数据处理电波折射修正的精度要求。  相似文献   

12.
速度是弹道和轨道的重要测量参数之一。过去和现在,在弹道的精密测量中,广泛地使用连续波雷达进行速度测量。在航天器轨道测量中,五十年代末期到六十年代初期,主要采用了单向无线电测速系统。到六十年代中后期,美国着手研制和使用连续波雷达进行双向测速。典型的有阿波罗统一S波段系统和哥达德距离和距离变化率测量系统等。各连续波系统在技术实施方案上各有不同,体制上也各有差别。这些体制各有利弊,下面试图对各种连续波测速技术及有关问题作一些粗浅的评述。具体而言,将从单向和双向测速系统;双向测速系统;终端和数据处理方法等几个方面进行叙述。  相似文献   

13.
高精度的角度采集和测量是激光跟踪仪实现跟踪和精密测量的关键。针对激光跟踪仪中采用的圆光栅编码器,本文介绍了一种基于FPGA的数据采集系统的设计与实现方法。该采集系统分为滤波、计数、通信三大模块。数字滤波模块用于消除跟踪控制过程中跟踪头振动、抖动产生的信号干扰;计数模块实现方波脉冲的倍频、辨向及计数;通信模块实现跨时钟域的数据传输。系统通过Modelsim仿真及实验测试验证了方法的可行性与可靠性。采用谐波分析方法对角度误差进行了修正,测量误差由3.5″降低到1.5″。本文设计的角度采集系统及谐波分析误差修正方法具有一定的通用性,可广泛应用于相关领域。  相似文献   

14.
对弹道导弹惯性测量系统进行误差分析和精度指标分配是保证导航精度和武器作战性能的一项重要任务.针对目前惯性导航系统误差分析不全面、精度评估准则单一以及精度指标分配方法不准确的不足,提出了一种弹道导弹惯性测量系统精度指标自适应分配方法,能够按照误差项对精度的影响合理化分配精度指标.该方法首先分析了影响导航精度的所有误差项,并对比各误差项对导航精度的影响.其次,根据总体精度要求值和各误差源在落点精度中的占比,对每项误差系数进行自适应分配,通过逐次调整落点精度中占比最大误差项,最终实现精度指标要求下的最优误差系数指标.在精度指标自适应分配方法基础上,根据落点分布方向性,提出了一种横纵方向误差不等时的精度指标分配方法,更加突出方向性差异.由落点精度模拟可知,经自适应调整后,导弹落点的圆概率误差值(Circular Error Probable,CEP)和横纵向误差值均收敛到精度要求范围内,同时各项误差系数引起的落点精度占比更均匀,该方法为工程设计人员提供了设计依据与思路.  相似文献   

15.
基于组合导航技术的光纤捷联系统在线标定   总被引:6,自引:1,他引:5  
张小跃  张春熹  宋凝芳 《航空学报》2008,29(6):1656-1659
 将光纤捷联系统惯性测量单元(IMU)输出误差分解成零偏误差、标度因数误差、失准角误差和随机白噪声几个部分,建立了系统误差模型,基于此模型设计卡尔曼滤波器引入高精度外部信息源对IMU进行在线标定。将此方法应用于某光纤捷联系统进行跑车试验,结果表明:引入外部信息源进行在线标定与补偿后系统纯惯导精度显著提高,本文建立的系统误差模型和在线估计方式有效估计了IMU输出误差,实现了系统在线标定,提高了系统实用精度。  相似文献   

16.
本文首次提出了根据导弹外测系统中雷达电波射线经过的区域进行大气结构探测的新方法,并分析了下垫面复杂地区高精度是续波干涉仪外测系统中大气水平不均匀性对电波折射误差修正精度的影响。  相似文献   

17.
传统精密轨迹测量方法大都采用GPS、全站仪等设备,存在设备不易架设、数据不连续、对环境要求较高等缺点。针对该问题提出一种基于航位推算系统的轨迹测量方法。该方法在航位推算基础上引入了位置修正技术,通过起始点与终点坐标即可计算出系统俯仰角误差、方位角误差及里程仪标度因数误差。系统完成航位推算计算后,用求解出的系统误差对航位推算轨迹进行修正,即可获得高精度的轨迹数据。最后通过试验验证该方法可行,系统行进153m误差小于0.12m。  相似文献   

18.
分析了LXJ-40离心机光栅测速系统的特点,并从测速信号质量要求出发,分析了出现稳速系统锁相环“滑相”现象及在高速(180~202r/min)中“飞车”现象的原因,提出了提高LXJ-40离心机光栅测速系统信号质量的方法。  相似文献   

19.
2.4m跨声速风洞带TPS测力试验数据精度要求分析   总被引:1,自引:0,他引:1  
成功建立带TPS风洞测力试验技术的一个关键问题是确保试验数据具有足够的精度,必须精细地分配误差。为获得满足工程需要的高精度测力试验数据,给出一种基于计算机符号运算的子程序,完成不确定度计算过程中公式自动推导、计算。最后通过对TPS风洞试验数据精度的敏度分析,给出了某运输机在2.4m跨声速风洞TPS试验中各环节的误差分配要求。  相似文献   

20.
目前卫星定位技术中常用的高精度定位方法主要是相对定位和非差相位精密单点定位。非差相位精密单点定位无法像相对定位那样使用差分方式来消除定位中的某些误差,因而如何对影响定位的各个误差源进行准确地建模修正是提高非差相位精密单点定位精度和收敛速度的关键。本文从非差相位精密单点定位的3个关键环节入手,对影响定位收敛速度的因素进行简要分析,讨论了改善措施,并结合实际数据进行了相关验证。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号