首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
工艺技术     
利用激光成形技术可用粉末制造飞机零件 航空航天工业采用一种激光成形技术,用粉末状钛制造高科技钛件。这是一种新的工艺,可以降低样机零件的生产成本。美国明尼苏达州的研究人员研究了这种激光成形工艺,可把钛合金粉末沉积到基材上,形成可加工到低表面粗糙度值的“预成形”形状。这种工艺可比传统的铸造法或其他加工方法减少生产废品80%,并把生产周期从几个月减少到几周。 激光成形工艺是在惰性气体(通常是氩气)室中采用高功率二氧化碳激光熔化基材和正在沉积的钛粉。采用这种工艺制造零件,激光保持不变,而零件本身通过计算机…  相似文献   

2.
工艺动态     
喷射成形大型航宇合金零件   喷射成形技术正在很快成为制造飞机发动机镍铝超级合金零件的一种最具成本-效益的可靠方法。这种技术采用很细的金属合金雾滴制造零件,在许多情况下用这种方法制造的零件比传统方法制造的零件更坚固,更有韧性。   在加工时采用氩气或氮气使金属呈雾状,形成液滴(10~500?μm),然后通过锥形喷流沉积在预成形件的表面。添加陶瓷颗粒(5~15?μm碳化硅)转换合金涂层以形成金属基复合材料。该工艺特别适于制造发动机环和外壳等零件,在某些情况下比传统制造方法降低生产成本30%。   随着飞机发动机体积增大,通过传统方法制造令人满意的、有严格安全标准的部件显得日益困难。喷射成形技术制造的零件与传统方法制造的零件的强度和疲劳特性相同,因此,可以充分利用以前不适用于航宇零件的合金。由于这种工艺可以制造出大型零件,因此可用于制造更大的发动机和飞机。   采用高速加工单元 减少循环时间和装配时间   最近波音民机集团的Wichita公司开始采用高速加工单元更快更有效地制造飞机窗户连接隔框。铝钛锻件加工的窗户连接隔框包裹在飞机座舱的周围,制造起来很复杂。每个窗户连接隔框由带有100多个孔的复合角材组成。每个孔都必须很精确,公差为千分之几英寸,用传统方法很难加工,需要多次设定。这种情况不但影响循环时间,而且多次加工产生的热量可能使零件翘曲,损坏零件的整体性和精度。Wichita公司选择了3台高速加工单元,提高了零件的质量和产量,减少了循环时间。   新的加工单元包括9台Makino MC1816-5X高速加工中心,不但省去了专用机械设备,而且还合并了零件的精加工和钻孔工序。比以前的设备速度快30%,能制造更多高质量零件。高科技支撑系统可缩短每次循环时间,增加主轴的利用率,减少操作者出现误差的机会。MC1816-5X高速加工中心由A2单元控制器支撑并且是标准化工装,能为新一代737以及767和777飞机制造24种不同的窗户连接隔框。   高速钻削是新系统的主要应用。由于在MC1816-5X上进行钻孔工序,孔的精度从几百分之一英寸变为几千分之一英寸。嵌入式钻削刀具和端面铣用10?000?r/min的速度铣孔。切屑带走因切削产生的热量,减少了在工件上切割时的热影响。   零件的质量也影响窗户连接隔框组件的加工循环时间和成本。用于装配时消除由于零件不精确引起飞机铝蒙皮和窗户框之间的小间隙的衬垫已经减到最少。   传统装配这些零件需要几百个定做的垫片,制造和安装垫片负面影响了装配时间、成本和窗户组件的质量。现在只需一块垫片,而且已经特别设计到组件中。MC1816-5X加工中心的探测仪在加工过程中跟踪检测零件精度,保证没有人为误差。 激光成形技术——用粉末制造飞机零件   航空航天工业中采用一种激光成形技术,用粉末状钛制造高科技钛件。这是一种新的工艺,可以降低样机零件的生产成本。美国明尼苏达州的研究人员研究了这种激光成形工艺,可把钛合金粉末沉积到基材上,形成可加工到低表面粗糙度值的“预成形”形状。这种工艺可比传统的铸造法或其他加工方法减少生产废品80%,并把生产周期从几个月减少到几周。   激光成形工艺是在惰性气体(通常是氩气)室中采用高功率二氧化碳激光熔化基材和正在沉积的钛粉。采用这种工艺制造零件,激光保持不变,而零件本身通过计算机数控(CNC)装置移动。CNC机床随刀具轨迹移动。设计者采用标准的计算机辅助设计软件设计的实体模型直接形成刀具轨迹。该技术对于制造样机零件和小规模生产运行是理想的,还有可能广泛应用于钛合金加工。 降低飞机噪声的新工艺   通过采用Sulzer Metco公司的新型等离子喷涂内径技术,可制造更安静、效率更高的飞机发动机。   在2~4座的小型飞机中,发动机占了飞机总重量的很大比例。因此,如果采用较轻的材料制造发动机,飞机会更轻,污染会更小。这种既轻又有强度的材料是铝硅合金。但是在汽缸内径和活塞环之间还有摩擦问题。传统的解决方法是在铝块和活塞环之间插入铸铁环,这样就增加了重量和成本。另外还试验了其他方法,不是成本较高,就是产生了环境问题。   Sulzer Metco公司提供的解决方法是用耐磨损和摩擦的等离子涂层喷涂铝孔的内径。在喷枪头的旋转速度达到200次/min的Rota-Plasma-500设备上进行。35?mm内径可获得稳定的表面,可自动重复连续生产。   目前瑞士Langenthal的MDB Flugtechnik公司已成功应用这项技术制造了四缸铝发动机,采用液体冷却,使用无铝燃料,降低了常用的汽缸内衬的重量,发动机更轻了。 CNC改进了航空航天工厂的多轴向加工   制造数据系统公司(MDSI)的Open CNC软件是一种全软件化的CNC软件包,不但能满足航空航天用复杂的五坐标机床的需要,而且能帮助减少循环时间,增加可利用时间。采用MDSI的软件,机床总体性能大大提高。在双主轴Rigid五坐标铣床和Sundstrand五坐标Omnimil机床上安装了MDSI的Open CNC软件以后,明显提高了生产率,并能把网络上的一串机床连接起来,进行遥控诊断、直接数字控制和数据收集。此外,还可按照所需要的方式进行管理。 复合材料设计软件减少了 欧洲战斗机零件的加工时间   复合材料设计软件正在帮助英国航宇公司的工程师们大大减少欧洲战斗机2000中的复合材料的加工时间。美国马萨诸塞州复合材料设计技术公司(CDT)的制造工程师们在计算机上确定复合材料铺层,取消了过去在复杂表面上进行复合材料铺层的试车,消灭了误差。新技术保证制造能反映设计意图。通过取消不必要的补片可减轻重量,英国航宇公司也希望通过采用这个软件节省生产时间。 (盛蔼伦 供稿) 摩擦搅拌焊接技术用于航空航天领域   Eclipse航空公司打算把摩擦搅拌焊接技术应用于航空产品上。首先在薄的材料上应用。这是公司为制造强大、安全和经济性飞机计划的一部分,将在价格和性能上有新的突破。   摩擦搅拌焊接被用于波音火箭Delta家族的主要结构生产,并被批准用于航天飞机的外部燃料箱。此外,它还用于造船和海运业。摩擦搅拌焊接技术的优点很多,它取消了几千个铆钉,从而节省了装配成本,并且使连接件强度更高、重量更轻、结构效率更高。   摩擦搅拌焊接使用一种特殊的工具,该工具上带有突出的销棒,把销棒插入两片要焊接的材料之间,并且沿焊接区域移动,同时高速转动。这样在工具与铝合金之间产生摩擦热,使铝合金软化,但不熔化,材料变为塑性状态与基体成为一体。   Eclipse航空公司致力于设计和生产一种现代、经济的喷气飞机,以此改变运输机市场。公司正在应用产生巨大变革的推进装置、制造及电子系统来生产比今天更安全、成本更低、操作更容易的小型喷气飞机。 在B-2飞机上应用的新材料   美国空军正在试验一种新型磁性雷达吸波材料,目的是极大地减少对B-2轰炸机隐身表面进行维护的时间和精力。如果该材料满足预期的要求,将在今后7年计划要维修的20架飞机上应用。喷涂在雷达上的新型吸波材料试验是在加利福尼亚的爱德华空军基地进行的,这项试验将使维修时间从以小时计算缩减到以分钟计算。   新型材料名称为交变高频材料(Alternate High_Frequency Material,AHFM),是一种永久涂层。这种涂层被喷涂在轰炸机外围有口盖的壁板处,大约90%可移动蒙皮壁板使用这种材料,从而减小缝隙尺寸,避免反射雷达信号。使用这种材料的大部分壁板是在B-2机身的下侧及靠近前缘及后缘部分。此外,用紧固件固定的壁板也要喷涂这种材料。使用该技术主要是提高飞机的低可探性,并且可使非隐身的军用飞机具有一定的隐身性。 (任晓华 供稿) 高速高精密龙门式加工中心   目前正在英国Marwin Production Systems公司的Wolver hampton工厂制造的高速高精密三轴联动CNC龙门式加工中心的床身有45?m长,7?m宽,比目前世界上航空航天工业领域中所使用的其他机床要大得多。该机床已由英国宇航系统的空中客车公司订购,用于加工空中客车A340-600的铝合金机翼蒙皮板。   该机床是Marwin Production Systems公司的Alumax系列产品,它有两个平行的41?m×3.6?m×0.55?m的加工区,可同时进行加工。龙门移动,立式双主轴,每一主轴具有85?kW功率,最高转速20?000?r/min,工进20?m/min,±1?m/s2加减速度。为了确保X轴定位的高精度,Marwin Production Systems公司采用了激光位移检测装置来代替常用的磁尺或光棚位移检测装置。该机床还装置了非接触式自动测量加工板材厚度的超声波检测系统、两个独立的ATC及刀具识别和使用寿命监测装置等,特别适用于航空航天工业铝合金板材和左右对称件的高效高质加工。Alumax系列的一台单龙门、五轴联动、30?m长床身的CNC高速高精密加工中心已在韩国航空工厂的新车间中运行,A、B轴的使用范围为±30°,该机床主要用于加工欧洲和美国的飞机零件,使用效果令人满意。   Marwin Production Systems公司已生产的Alumax系列产品中最大的机床是床身长87?m、三龙门、五轴联动的高速高精密CNC龙门式加工中心。该机床可容纳6个21?m长的机翼板材同时加工,是目前世界上最大的龙门式加工中心。 (是有钧) (栏目责编 宇 迪)  相似文献   

3.
激光直接沉积成形对于飞机起落架制造具有"变革性"意义,具有突破规格限制、减少原材料浪费、缩短加工制造周期等技术优点,在未来飞机起落架快速试制方面具有较为明显的技术优势及应用前景。目前已突破A-100钢激光直接沉积增材制造成形工艺、性能质量控制等关键技术,试制的起落架零件已在飞机上实现领先试用,力学性能基本达到材料锻件水平。但面向该技术的推广应用仍面临着成形工艺策略、热处理控制、无损检测、构件表面强化及综合验证等关键技术的进一步突破。  相似文献   

4.
喷射成形技术正在很快成为制造飞机发动机镍铝超级合金零件的一种最具成本 -效益的可靠方法。这种技术采用很细的金属合金雾滴制造零件 ,在许多情况下用这种方法制造的零件比传统方法制造的零件更坚固 ,更有韧性。在加工时采用氩气或氮气使金属呈雾状 ,形成液滴 (10~ 50 0 μm) ,然后通过锥形喷流沉积在预成形件的表面。添加陶瓷颗粒 (5~ 15μm碳化硅 )转换合金涂层以形成金属基复合材料。该工艺特别适于制造发动机环和外壳等零件 ,在某些情况下比传统制造方法降低生产成本 30 %。随着飞机发动机体积增大 ,通过传统方法制造令人满意的、…  相似文献   

5.
激光熔化沉积(LMD)技术快速、自由的成形特点为航空构件的制造和发展带来了新的设计思路和方法.对激光熔化沉积钛合金与钛基复合材料的组织结构和力学性能进行了归纳分析,包括成形工艺参数、热处理技术以及增强体种类和含量对成形钛合金与钛基复合材料组织力学性能的影响,发现成形工艺参数直接影响粉末熔化程度、熔合质量和成形显微结构,...  相似文献   

6.
冷挤压成形技术是指在室温条件下 ,由模具借助锻压机械的压力 ,将金属坯料压制成所需形状的工艺技术 ,是一种少切削、无切削加工工艺。采用冷挤压技术成形金属零件 ,与传统的机械切削方法或铸造法相比 ,具有节省原材料、降低能源消耗、提高生产效率、提高零件的几何精度、提高强度和刚度、可加工形状复杂的异形零件等优点。本成果经过多年试验 ,已成功地把冷挤压成形技术应用到电连接器的铝合金壳体的生产中 ,制造出多种圆形、矩形电连接器的铝合金壳体零件。采用本项技术制造的铝合金壳体壁薄质轻比强高 ,形状复杂质量好。最小壁厚可达 0 .…  相似文献   

7.
一、概述在某机试制中,我们对几种空心回转体TA2钛板零件(如图1)的热旋压工艺进行了一些探讨。其中零件1和零件2是锥形空心回转体零件,这种零件若用一般拉深成形,容易失稳起皱,而且模具结构比较复杂;另外,零件3的收边模具也较复杂,故采用热旋压成形工艺。采用加热旋压,可以提高钛板的塑性,减少变形抗力和回弹。旋压时,直接用火焰(我们采用的是压缩空气——乙炔焰)喷烤加热毛  相似文献   

8.
激光熔化沉积(LMD)是一种典型的增材制造技术,与传统的成形工艺相比,具有加工周期短、设计灵活、成形件尺寸精度高、绿色环保等一系列特点。梯度功能材料(FGM)是一种先进的功能性材料,其内部没有明显的界面,材料的成分、组织性能呈梯度变化。在梯度功能材料的制造方法中,激光熔化沉积既可以缓和不同材料间的应力,保证材料优良的成形性,又可以通过灵活的设计来控制成形件组织和性能的变化和分布规律,为梯度功能材料的制造提供了一种新途径。介绍了激光熔化沉积的技术特点、梯度功能材料的特点与应用、国内外激光熔化沉积技术制造梯度功能材料方面的研究进展,以及团队目前在此领域的研究状况,同时分析了利用激光熔化沉积技术制造梯度功能材料的发展前景。  相似文献   

9.
金属构件选区激光熔化成形技术   总被引:6,自引:2,他引:6  
金属构件由粉末直接成形是快速成形技术的发展方向.现阶段已有的金属粉末直接快速成形技术主要有选区激光烧结、激光熔覆和选区激光熔化的3种工艺.前两种方法不能直接制造出可直接使用的达到一定尺寸精度和表面粗糙度要求的金属构件.选区激光熔化方法利用直径30~50μm的聚焦激光束,把金属或合金粉末选区逐层熔化,堆积成一个冶金结合、组织致密的实体.其外形不需进一步加工,经抛光或简单表面处理就可直接作模具或工件使用.本文对现阶段国内外快速成形金属零件的主要的3种工艺方法进行简要评述,着重介绍选区激光熔化技术的设备和工艺的研究现状和发展前景.  相似文献   

10.
激光熔化沉积快速成形TA15钛合金的力学性能   总被引:3,自引:0,他引:3  
激光熔化沉积(LMD)快速成形技术,利用快速原型制造(RPM)技术在无需任何模具和工装条件下快速制造任意复杂形状零件的全数字化快速制造基本原理,以新材料快速凝固激光冶金制备技术为手段,通过金属材料的激光逐层熔化沉积,直接由零件CAD模型一步完成高性能"近终形"复杂金属零件的快速成形制造。  相似文献   

11.
一种可取代固定夹具的新型柔性夹具CNA公司制造的新一代积木式多支柱夹具是用来为典型飞机蒙皮壁板特形铣削工艺定位的。这种计算机控制的被动式夹具(平台)通过采用几十到几百个高度可变的支柱可固定弯曲成形的壁板,该夹具可为包括铣、蚀刻、钻、铆以及激光和水切割...  相似文献   

12.
航空高性能金属结构件激光快速成形研究进展   总被引:7,自引:0,他引:7  
高性能金属结构件激光快速成形制造技术是利用快速原型制造(RPM)的基本原理,通过金属材料快速凝固激光熔覆逐层沉积,直接由零件CAD模型一步完成高性能“近终形”复杂金属零件的快速成形制造;是一种代表着先进制造技术与材料发展方向,将高性能结构材料设计、制备与“近终形”复杂零件直接成形有机融为一体的无模、非接触、无污染、数字化、知识化成形制造新技术  相似文献   

13.
激光快速成形镍基高温合金研究   总被引:18,自引:1,他引:18  
在单道熔覆及薄壁墙试样制备的基础上 ,大致确定出Rene′95激光快速成形时的工艺参数和每层沉积高度 ,根据此高度对零件的CAD模型进行分层切片处理 ,生成二维平面信息 ,经过数据后处理并加入加工参数 ,生成数控信息输入成形系统 ,控制成形系统的沉积过程顺序完成各层的成形制造 ,直至加工出与CAD模型相一致的具有复杂外形的致密的金属零件。成形所用激光功率 16 0 0W ,扫描速度 3mm/s ,送粉速率 6 2g/min ,载气流量 0 3m3 /h ,所制零件总高 112mm(共沉积 380层 ) ,壁厚约 3mm ,每层沉积高度为 0 3mm ,零件具有良好的外形和尺寸精度。结果表明 :激光快速成形Rene′95镍基合金组织致密 ,成分均匀 ,沿成型高度方向具有定向凝固组织特征 ,具有较高的力学性能 但由于成型时存在很高的残余应力 ,容易导致开裂 ,通过基板预热可减缓应力。  相似文献   

14.
快速原型制造技术变革了传统的体积成形与去除成形的加工方式,是一种材料累加制造法,可从三维数模直接制造出任意复杂的零件,适合加工形状复杂的难成形/难加工材料和生产批量小、科技附加值高、具有特殊要求的航空航天零件。  相似文献   

15.
钣金零件是构成飞机外形、结构和内装的主要部件,钣金成形是航空制造的关键技术之一。钣金成形质量的好坏主要取决于钣金成形模具的制造质量。钣金成形模具数字化制造是在考虑零件材料塑性变形特点、成形质量要求等因素基础上,依靠模具数字化设计、数字化制造模形、优化的加工工艺参数实现过程成形的精确控制,使零件成形后不需要加工或少量加工就可满足质量要求。  相似文献   

16.
高性能金属零件激光增材制造技术研究进展   总被引:2,自引:0,他引:2  
激光增材制造(Laser Additive Manufacturing,LAM)技术实际上是一种兼顾精确成形和高性能成性一体化需求的先进制造技术.首先介绍了两种典型激光增材制造技术的成形原理及其特点;然后介绍国内外激光增材制造技术的最新研究进展;再重点介绍西安交通大学在激光增材制造技术方面的最新研究进展:(1)超声振动辅助激光熔覆沉积对IN718沉积态组织与性能的影响;(2)感应辅助激光熔覆沉积DD4定向晶修复DZ125L叶片的研究;(3)CuW功能梯度复合材料的激光熔覆沉积工艺研究;(4)送粉气纯度对激光熔覆Fe314修复40Cr组织与性能的影响;最后阐述了激光增材制造技术所面临的挑战.  相似文献   

17.
无模成形直接制造金属零件无模成形工艺没有工模具与工件之间的干扰,并且可以一次生产出整个零件,甚至还可带有活动部分,例如活动扳手就可以采用此法制造。由于没有工模具的干扰,因而零件几何形状很容易通过CAD数据控制。生产的准备工作也较简单,故该法适用于单件...  相似文献   

18.
《航空工艺技术》1994年主要文章索引技术评述零件在制造使用中的热变形效应1-30齿轮加工技术新进展1-33同一零件的不同硬度要求2-27网格分析技术在板料成形中的应用与发展2-29开放、柔性的CNC系统(上)3-3英国超塑成形技术的应用现状3-20...  相似文献   

19.
国外工艺动态激光加工技术1994年9月,在美国芝加哥“94国际机床与制造技术”展览会展出了大量激光加工设备,其中ROMONIC公司推出了一种CNC激光加工中心,集切削、焊接、打孔、表面改性处理于一体,实现了激光多工种加工的集成化和数控激光打孔,其功率...  相似文献   

20.
一、前言金属强力旋压是一种无切削压力加工工艺。选用这种工艺能够较容易地制造形状比较复杂的各种金属材料(包括难成形材料)的旋转体空心零件。这种工艺具有节省原材料、工艺装备简单、产品质量高等一系列优点。因而它在现代生产技术中,特别是在航空、导弹、火箭、宇宙飞行器以及各种军事工业中,具有广阔的使用前景。强力旋压工艺过程中,变形力是这个过程  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号