首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fuel-optimal control problem arising in noncoplanar orbital transfer employing aeroassist technology is addressed. The mission involves the transfer from high Earth orbit to low Earth orbit with plane change. The complete maneuver consists of a deorbit impulse to inject a vehicle from a circular orbit to an elliptic orbit for atmospheric entry, a boost impulse at the exit from the atmosphere for the vehicle to attain a desired orbital altitude, and a reorbit impulse to circularize the path of the vehicle. In order to minimize the total fuel consumption, a performance index is chosen as the sum of the deorbit, boost, and reorbit impulses. The application of optimization principles leads to a nonlinear, two-point, boundary value problem, which is solved by a multiple shooting method  相似文献   

2.
随着空间应用需求的日益增大,深空探测已成为现实,而月球显然是人类走向深空的首选目标。发射月球探测器通常分3个阶段,其运动状态分别对应3种不同类型的轨道:近地停泊轨道、地月转移轨道和绕月轨道。月球是1个慢自转天体且无大气,就轨道解而言这些因素导致环月卫星的运动与地球卫星有所差别。本文针对月球探测任务的特点,从月球与地球的差别入手,在仔细分析月球卫星的受力状况前提下,着重阐述月球探测器在环月段精密定轨的方法原理和具体实现过程。  相似文献   

3.
彭坤  黄震  杨宏  张柏楠 《航空学报》2018,39(8):322047-322047
针对地月空间货运任务和环月轨道空间设施建设任务,提出一种弹道逃逸和小推力捕获相结合的新型地月轨道转移模式,并建立了一整套该类型轨道设计方法。首先,在三体模型假设下分别建立地心弹道逃逸轨道和月心小推力捕获轨道的二维极坐标动力学模型。对于弹道逃逸轨道,将地心旋转系对准角和地月转移加速速度增量作为控制变量,提出初值估计解析公式,并应用序列二次规划算法进行快速求解。对于小推力捕获轨道,以月心距为参考量设置与弹道逃逸轨道的拼接点约束,提出能量匹配方法预估飞行时间,采用最优螺旋轨道的初始伴随状态解析式预估近月点伴随变量初值。基于混合法和轨道逆推思想,采用人工免疫算法进行小推力捕获轨道求解。仿真结果表明,基于弹道逃逸和小推力捕获的地月轨道转移方式大幅降低了近月制动燃料消耗,能快速穿越地球辐射带,且飞行时间适中;同时,提出的轨道设计方法能快速搜索到基于弹道逃逸和小推力捕获的地月转移轨道,验证了该方法的有效性。  相似文献   

4.
谭明虎  张科  吕梅柏  邢超 《航空学报》2014,35(5):1209-1215
基于平面圆形限制性三体问题模型,利用与绕月轨道相切的大幅值Lyapunov周期轨道,提出了一种新的地月转移轨道设计方法。根据Poincaré截面与限制性三体问题动力学系统对称性计算得到的大幅值Lyapunov轨道,通过与绕月轨道拼接,将地月转移问题转化为地球到大幅值Lyapunov轨道的转移问题。为保证探测器能够从近地轨道(LEO)切向逃逸到达大幅值Lyapunov轨道,通过计算其稳定流形,采用最近点作为Poincaré截面的终止条件求解探测器的初始状态,并根据初始状态完成地月轨道的设计。仿真结果表明,该地月转移策略相比于Hohmann转移,在同样只需要两次速度增量的前提下,约节约100 m/s的速度增量,该研究为地月转移轨道的设计提供了一种新思路。  相似文献   

5.
对环月轨道共面交会的载人登月任务中,着陆器(LM)奔月零窗口与轨道参数精确快速设计方法进行了研究。任务采用人货分离奔月模式,着陆器于载人飞船到达环月轨道前抵达环月共面交会轨道,着陆器近月点一次共面减速完成近月制动。提出一种三层快速精确奔月窗口搜索方法:第一层采用地心二体轨道理论解析计算月窗口及奔月轨道参数初值,作为正确性基本参考;第二层采用改进的双二体解析动力学模型求解月窗口内奔月轨道参数变化规律;第三层采用高精度轨道动力学模型和SQP_Snopt优化求解奔月零窗口及轨道参数精确解。仿真结果表明,本文提出的三层逐级奔月窗口搜索方法能快速精确求解载人登月任务中着陆器奔月窗口及精确轨道参数,也揭示了影响着陆器奔月窗口的主次因素和规律,为中国未来载人登月工程提供参考。  相似文献   

6.
The Lunar Radar Sounder (LRS) onboard the KAGUYA (SELENE) spacecraft has successfully performed radar sounder observations of the lunar subsurface structures and passive observations of natural radio and plasma waves from the lunar orbit. After the transfer of the spacecraft into the final lunar orbit and antenna deployment, the operation of LRS started on October 29, 2007. Through the operation until June 10, 2009, 2363 hours worth of radar sounder data and 8961 hours worth of natural radio and plasma wave data have been obtained. It was revealed through radar sounder observations that there are distinct reflectors at a depth of several hundred meters in the nearside maria, which are inferred to be buried regolith layers covered by a basalt layer with a thickness of several hundred meters. Radar sounder data were obtained not only in the nearside maria but also in other regions such as the farside highland region and polar region. LRS also performed passive observations of natural plasma waves associated with interaction processes between the solar wind plasma and the moon, and the natural waves from the Earth, the sun, and Jupiter. Natural radio waves such as auroral kilometric radiation (AKR) with interference patterns caused by the lunar surface reflections, and Jovian hectometric (HOM) emissions were detected. Intense electrostatic plasma waves around 20 kHz were almost always observed at local electron plasma frequency in the solar wind, and the electron density profile, including the lunar wake boundary, was derived along the spacecraft trajectory. Broadband noises below several kHz were frequently observed in the dayside and wake boundary of the moon and it was found that a portion of them consist of bipolar pulses. The datasets obtained by LRS will make contributions for studies on the lunar geology and physical processes of natural radio and plasma wave generation and propagation.  相似文献   

7.
《中国航空学报》2023,36(8):115-127
The problem of contingency return from the low lunar orbit is studied. A novel two-maneuver indirect return strategy is proposed. By effectively using the Earth’s gravity to change the orbital plane of the transfer orbit, the second maneuver in the well-known three-maneuver return strategy can be removed, so the total delta-v is reduced. Compared with the single-maneuver direct return, our strategy has the advantage in that the re-entry epoch for the minimum delta-v cost can be advanced in time, with a minimum delta-v value similar to that of the direct return. The most obvious difference between our strategy and the traditional single- or multiple- maneuver strategies is that the complete transfer orbit is a patch between a two-body conic orbit and a three-body orbit instead of two conic orbits. Our strategy can serve as a useful option for contingency return from a low lunar orbit, especially when the delta-v constraint is stringent for a direct return and the contingency epoch is far away from the return window.  相似文献   

8.
Low-thrust Earth-orbit transfers with 10?5-order thrust-to-weight ratios involve a large number of orbital revolutions which poses a real challenge to trajectory optimization. This article develops a direct method to optimize minimum-time low-thrust many-revolution Earth-orbit transfers. A parameterized control law in each orbit, in the form of the true optimal control, is proposed, and the time history of the parameters governing the control law is interpolated through a finite number of nodal values. The orbital averaging method is used to significantly reduce the computational workload and the trajectory optimization is conducted based on the orbital averaging dynamics expressed by nonsingular equinoctial elements. Furthermore, Earth's shadowing and perturbation effects are taken into account. The optimal transfer problem is thus converted to the parameter optimization problem that can be solved by nonlinear programming. Taking advantage of the mapping between the parameterized control law and the Lyapunov control law, a technique is proposed to acquire good initial guesses for optimization variables, which results in enlarged convergence domain of the direct optimization method. Numerical examples of optimal Earth-orbit transfers are presented.  相似文献   

9.
研究了电推进在静止轨道空间碎片减缓中应用的可行性和效果。通过分析电推进中离子推进的技术特点、发展和应用,阐明了用电推进将静止轨道卫星在寿命末期移高到“垃圾轨道”是可行的。提出了电推进采用沿飞行方向的常值推力,以多次双脉冲变轨方式工作的方案,并通过仿真计算,得出了该方案中推力大小、工作时间、特征速度、燃料消耗量等参数的确定方法和量化性指标,验证了电推进应用在空间碎片减缓中的作用和效果。探讨了电推进以脉冲方式工作的工程实现方案.  相似文献   

10.
载人登月任务中,任务中止策略设计是确保航天员安全返回的重要基础。首先结合"星座"计划飞行方案分析了载人登月任务各飞行阶段的中止策略;其次针对地月转移巡航段进行了双脉冲中止策略设计,以速度增量数值、方位角以及变轨时间间隔为控制变量,加入轨道同向、近地点高度、偏心率以及飞行时间约束,提出双脉冲变轨计算流程;最后采用人工免疫算法对该问题进行了求解和优化。仿真算例表明,双脉冲中止策略存在多组解,其全局分布特性为:飞行时间越短速度增量需求越大;飞行时间相近时,大偏心率中止轨道对应的速度增量小;故障点离地月加速点越近,所需速度增量越小。同时也验证了人工免疫算法求解双脉冲中止策略问题的有效性。  相似文献   

11.
Power requirements for an electric propulsion Earth orbital transport vehicle (EOTV), which can effectively deliver large payloads using much less propellant than chemical transfer methods, are addressed. The power beaming concept is described. Arcjets, magnetoplasmadynamic (MPD) thrusters, and ion engines are covered. Power supply characteristics are discussed for nuclear, solar and power-beaming systems. Operational characteristics are given for each, as are the effects of the power supply alternative on the overall craft performance. Because of its modular nature, the power beaming can meet the power requirements of all three electric propulsion types. Commonality of approach allows different electric propulsion approaches to be powered by means of a single power supply approach. Power beaming exhibits better flexibility and performance than onboard nuclear or solar power systems  相似文献   

12.
Optimization of project-ballistic parameters of the spacecraft with propulsion systems with energy accumulation during the orbital transfer between low Earth orbits in the non-central gravitational field of the Earth is considered. The mass model of the spacecraft with an uncontrollable power-limited engine with the energy accumulator is used. The method of the project-ballistic optimization is obtained as an iterative procedure. Energy storage usage efficiency during the orbital transfer between low Earth orbits is estimated.  相似文献   

13.
ARTEMIS Science Objectives   总被引:1,自引:0,他引:1  
NASA??s two spacecraft ARTEMIS mission will address both heliospheric and planetary research questions, first while in orbit about the Earth with the Moon and subsequently while in orbit about the Moon. Heliospheric topics include the structure of the Earth??s magnetotail; reconnection, particle acceleration, and turbulence in the Earth??s magnetosphere, at the bow shock, and in the solar wind; and the formation and structure of the lunar wake. Planetary topics include the lunar exosphere and its relationship to the composition of the lunar surface, the effects of electric fields on dust in the exosphere, internal structure of the Moon, and the lunar crustal magnetic field. This paper describes the expected contributions of ARTEMIS to these baseline scientific objectives.  相似文献   

14.
奔月转移轨道的快速设计方法研究   总被引:2,自引:1,他引:2  
李立涛  张振民  杨涤 《航空学报》2003,24(2):152-156
 结合重叠圆锥曲线方法,针对着陆型和月球卫星型两种类型奔月转移轨道,给出了一种奔月转移轨道的快速设计方法。该方法是一种无需轨道数值积分的纯代数计算方法,直接从目标轨道参数出发,具有计算速度快、精度高的特点,避免了圆锥曲线拼接法精度差的缺点,可用于这两类奔月转移轨道的初始设计。该方法可为精确轨道计算提供较好的初值,大大缩短了轨道精确计算所需的时间。同时还针对地球扁率( J2 ) 的影响,给出了一种修正方法,提高了本方法的计算精度。  相似文献   

15.
《中国航空学报》2023,36(5):223-238
CubeSats have attracted more research interest recently due to their lower cost and shorter production time. A promising technology for CubeSat application is atmosphere-breathing electric propulsion, which can capture the atmospheric particles as propulsion propellant to maintain long-term mission at very low Earth orbit. This paper designs an atmosphere-breathing electric propulsion system for a 3 U CubeSat, which consists of an intake device and an electric thruster based on the inductively coupled plasma. The capture performance of intake device is optimized considering both particles capture efficiency and compression ratio. The plasma source is also analyzed by experiment and simulation. Then, the thrust performance is also estimated when taking into account the intake performance. The results show that it is feasible to use atmosphere-breathing electric propulsion technology for CubeSats to compensate for aerodynamic drag at lower Earth orbit.  相似文献   

16.
小推力航天器的地月低能转移轨道   总被引:5,自引:1,他引:4  
徐明  徐世杰 《航空学报》2008,29(4):781-787
 在限制性四体模型下研究基于小推力方式的地月低能转移问题,通过借助于平动点轨道的相空间结构来揭示小推力转移的机理。重点研究了小推力转移自由飞行段的构造:经由LL1点穿越获得最小能量的低能转移;而经由LL1点Halo轨道穿越,得到(M,N)圈穿越轨道;由于Halo轨道相对于平动点增加了一维度的选择,根据(2,2)圈穿越轨道构造该转移的自由飞行段。在地球势阱逃逸和月球势阱捕获段,分别设计了合适的小推力的控制律及发动机开/关机时间,成功实施近地球段的小推力加速和近月球段的减速。尽管未对所得到的结果进行优化,所得转移轨道的燃料消耗也与类似边界条件的SMART-1轨道基本一致。  相似文献   

17.
混合小推力航天器日心悬浮轨道保持控制   总被引:3,自引:3,他引:0  
张楷田  楼张鹏  王永  陈绍青 《航空学报》2015,36(12):3910-3918
针对太阳帆、太阳电混合推进航天器日心悬浮轨道保持控制问题进行了研究。为解决基于局部线性化模型设计轨道保持控制器时存在的控制精度不高、模型精确性过度依赖等问题,应用自抗扰控制(ADRC)技术设计了轨道保持控制器。首先,采用圆形限制性三体问题(CRTBP)模型推导了混合小推力航天器日心悬浮轨道动力学方程;然后,考虑系统模型不确定性和外部扰动,提出了一种基于扰动估计和补偿的轨道保持控制方法;最后,数值仿真表明存在系统模型不确定性、初始入轨误差及地球轨道偏心率扰动等因素的情况下,所设计的控制器仅需很小的速度增量即可实现高精度的日心悬浮轨道保持控制。  相似文献   

18.
陈弈澄  齐瑞云  张嘉芮  王焕杰 《航空学报》2019,40(7):322827-322827
针对采用太阳帆、太阳电混合小推力推进的航天器,研究了其在日心悬浮轨道的保持控制问题。为解决已有控制方法中未综合考虑内部未建模动态和外部未知扰动的问题,以及进一步提高系统控制性能,设计了一种高性能滑模控制策略。首先,考虑模型不确定性,建立了混合小推力航天器在日心悬浮轨道柱面坐标系的动力学方程;其次,基于改进型条件积分滑模面和径向基(RBF)神经网络设计了控制律,结合自适应方法在线估计不确定参数;接着,将求取的虚拟控制量在推进剂最优条件下转换成实际控制量,即太阳帆姿态角和太阳电推进力;最后,数值仿真验证了上述设计方法提高了系统鲁棒性,减小了轨道位置超调,并且混合推进相比于单一太阳帆推进,在更短收敛时间内控制精度提高了4个数量级,相比于单一太阳电推进,一年可以节省约89.6%的推进剂。  相似文献   

19.
This article, in allusion to the limitation of conventional stellar horizon atmospheric refraction based on orbital dynamics model and nonlinear Kalman filter in practical applications, proposes a new celestial analytic positioning method by stellar horizon atmospheric refraction for high-altitude flight vehicles, such as spacecraft, airplanes and ballistic missiles. First, by setting up the geometric connexion among the flight vehicle, the Earth and the altitude of starlight refraction, an expression for the relationship of starlight refraction angle and atmospheric density is deduced. Second, there are produced a novel measurement model of starlight refraction in a continuous range of altitudes (CRA) from 20 km to 50 km on the basis of the standard atmospheric data in stratosphere, and an empirical formula of stellar horizon atmospheric refraction in the same altitudes against the tangent altitude. Third, there is introduced a celestial analytic positioning algorithm, which uses the least square differential correction instead of nonlinear Kalman filter. The information about positions of a flight vehicle can be obtained directly by solving a set of nonlinear measurement equations. The stellar positioning algorithm adopts the characteristics of stellar horizon atmospheric refraction thereby removing needs for orbit dynamics models and priori knowledge of flight vehicles. The simulation results evidence the validity of the proposed stellar positioning algorithm.  相似文献   

20.
The two-body orbital transfer problem from an elliptic parking orbit to an excess veloc-ity vector with the tangent impulse is studied. The direction of the impulse is constrained to be aligned with the velocity vector, then speed changes are enough to nullify the relative velocity. First, if one tangent impulse is used, the transfer orbit is obtained by solving a single-variable function about the true anomaly of the initial orbit. For the initial circular orbit, the closed-form solution is derived. For the initial elliptic orbit, the discontinuous point is solved, then the initial true anomaly is obtained by a numerical iterative approach; moreover, an alternative method is proposed to avoid the singularity. There is only one solution for one-tangent-impulse escape trajectory. Then, based on the one-tangent-impulse solution, the minimum-energy multi-tangent-impulse escape trajectory is obtained by a numerical optimization algorithm, e.g., the genetic method. Finally, several examples are provided to validate the proposed method. The numerical results show that the minimum-energy multi-tangent-impulse escape trajectory is the same as the one-tangent-impulse trajectory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号