首页 | 本学科首页   官方微博 | 高级检索  
     检索      

混合小推力航天器轨道保持高性能滑模控制
引用本文:陈弈澄,齐瑞云,张嘉芮,王焕杰.混合小推力航天器轨道保持高性能滑模控制[J].航空学报,2019,40(7):322827-322827.
作者姓名:陈弈澄  齐瑞云  张嘉芮  王焕杰
作者单位:南京航空航天大学自动化学院,南京 211100;南京航空航天大学先进飞行器导航、控制与健康管理工业和信息化部重点实验室,南京 211100;上海航天控制技术研究所,上海 201109;上海市空间智能控制技术重点实验室,上海 201109
基金项目:国家自然科学基金(61873127);航空科学基金(2017ZA52013);江苏省"六大人才高峰"高层次人才资助项目(HKHT-010)
摘    要:针对采用太阳帆、太阳电混合小推力推进的航天器,研究了其在日心悬浮轨道的保持控制问题。为解决已有控制方法中未综合考虑内部未建模动态和外部未知扰动的问题,以及进一步提高系统控制性能,设计了一种高性能滑模控制策略。首先,考虑模型不确定性,建立了混合小推力航天器在日心悬浮轨道柱面坐标系的动力学方程;其次,基于改进型条件积分滑模面和径向基(RBF)神经网络设计了控制律,结合自适应方法在线估计不确定参数;接着,将求取的虚拟控制量在推进剂最优条件下转换成实际控制量,即太阳帆姿态角和太阳电推进力;最后,数值仿真验证了上述设计方法提高了系统鲁棒性,减小了轨道位置超调,并且混合推进相比于单一太阳帆推进,在更短收敛时间内控制精度提高了4个数量级,相比于单一太阳电推进,一年可以节省约89.6%的推进剂。

关 键 词:混合小推力  太阳帆  日心悬浮轨道  条件积分滑模面  径向基(RBF)神经网络  自适应控制
收稿时间:2018-12-03
修稿时间:2019-01-14

High-performance sliding mode control for orbit keeping of spacecraft using hybrid low-thrust propulsion
CHEN Yicheng,QI Ruiyun,ZHANG Jiarui,WANG Huanjie.High-performance sliding mode control for orbit keeping of spacecraft using hybrid low-thrust propulsion[J].Acta Aeronautica et Astronautica Sinica,2019,40(7):322827-322827.
Authors:CHEN Yicheng  QI Ruiyun  ZHANG Jiarui  WANG Huanjie
Abstract:For a spacecraft using hybrid solar sail and solar electric propulsion, the station-keeping control of the heliocentric displaced orbit is investigated. To solve the problem that internal unmodeled dynamics and external unknown disturbances are not considered comprehensively in the existing methods, and to further improve the performance of the system, a high-performance sliding mode control strategy is designed. Firstly, considering the uncertainty of the model, the dynamic equation of the hybrid low-thrust spacecraft keeping on heliocentric displaced orbit is established in the cylindrical coordinate system. Secondly, the control law is designed based on the improved conditional integral sliding surface and Radial Basis Function (RBF) neural network, and the uncertain parameters are estimated online by combining the adaptive method. Then, under the optimum condition of propellant, the virtual control variables are converted into actual control variables, namely attitude angles of solar sail and solar electric propulsion. Finally, numerical simulation verifies that the above design enhances the robustness of the system, reduces the overshoot of orbit position, and hybrid propulsion improves the control accuracy by 4 orders of magnitude in shorter convergence time compared to single solar sail propulsion, while it can save about 89.6% propellants a year compared to single solar electric propulsion.
Keywords:hybrid low-thrust propulsion  solar sails  heliocentric displaced orbit  conditional integral sliding surface  Radial Basis Function (RBF) neural network  adaptive control  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《航空学报》浏览原始摘要信息
点击此处可从《航空学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号