首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
介绍了一种适用于罗经系统在无法获得纬度情况下的航行中启动方法。基于惯性坐标系下的两个不同时间段内的重力加速度积分值实现纬度估计,根据估计的纬度值,完成初始对准。在动基座条件下,通过引入辅助速度信息补偿掉由于载体机动产生的误差,从而实现行进中启动。启动后采用组合导航或纯惯性导航的方式,可以实现方位的保持。通过分析发现,纬度估计精度主要受等效北向陀螺漂移的影响,方位对准精度主要受等效东向陀螺漂移的影响;试验结果表明,在300s时间内,方位角对准精度可以达到0.1°(RMS)。  相似文献   

2.
速度匹配传递对准受船体变形影响小,对准精度高,是舰载武器常用的传递对准方法之一。模拟实船情况,对速度匹配传递对准性能进行了深入仿真研究。研究结果表明:(1)速度匹配传递对准不易受船体变形影响。(2)舰船航向机动有助于提高速度匹配传递对准性能。舰船在匀速直航状态下,水平姿态角对准精度能达到0.4',方位姿态角对准精度2′左右。等效北向陀螺漂移的估计精度能达到80%,等效东向陀螺漂移和加速度计零偏无法估计。舰船在转弯状态下武器惯导各误差量估计精度和估计速度都有所提高,等效东向陀螺漂移和加速度计零偏能够估计出来,估计精度达90%以上。(3)基准信息阶跃变化会干扰速度匹配传递对准性能,引起姿态角估计误差。  相似文献   

3.
光纤陀螺捷联惯导系统被广泛应用于航空、航天、航海及陆地车辆定位定向等领域,对光纤陀螺输出误差进行补偿是提高导航精度的有效手段。温度漂移和常值零偏是影响光纤陀螺精度的两个主要误差来源,对角增量输出式三轴光纤陀螺捷联惯导系统的陀螺温度漂移及常值零偏误差参数估计方法进行了研究。针对光纤陀螺的温度漂移,提出了一种基于角增量的分段最小二乘估计方法,根据不同温度区间的特征使用低阶模型即可进行误差建模,估计结果相比整体估计方法更加精确,同时推导了各个温度段参数的边界条件,保证了温度漂移模型在不同温变速率条件下的连续性。针对三轴陀螺输出中包含的常值零偏,提出了一种基于地球自转角速度矢量模值观测的方法,可在不依赖高精度转台等外部基准设备的条件下对光纤陀螺零偏进行估计,可适用于高纬度地区及极区环境下的外场标定。通过温箱静置升温实验,对光纤陀螺惯导系统三轴角增量陀螺进行了温度漂移和零偏的估计与补偿,验证了提出方法的有效性。  相似文献   

4.
快速寻北系统在不同温度环境下冷启动过程中陀螺和加速度计输出的斜坡漂移及其斜率的逐次启动随机性影响了快速寻北精度。以激光陀螺快速寻北系统为研究对象,设计的α-β预滤波器在粗对准阶段即可收敛,可对陀螺和加速度计输出数据的漂移特性进行实时滤波估计与补偿,其带宽不对基座扰动引起的数据波动特征造成影响,有效消除了精对准过程中陀螺和加速度计斜坡漂移的影响。实验结果表明,激光陀螺快速寻北系统经α-β预滤波后冷启动寻北精度得到显著提高。  相似文献   

5.
速率方位惯性导航系统   总被引:1,自引:1,他引:0  
本文提出一种把平台式和捷联式惯导系统结合在一起的新的惯性导航系统。在该系统中使用的速率方位平台没有方位稳定回路、方位坐标分解器及同步器。平台和运载器的方位角是根据由水平环架支承的方位速率陀螺讯号借助积分运算得到的。这种惯导系统适用于运输机、飞航式及弹道式导弹等不作大角度俯仰机动的运载器。文中叙述了方位速率平台的工作原理、力学编排方程、初始对准的特点以及陀螺漂移的标定和补偿;同时对各主要误差源所引起的姿态、速度和导航定位误差的传播特性进行了模拟计算。在结论中指出:平台的结构简单、体积小、重量轻、可靠性好、可对方位陀螺的漂移进行标定和补偿是其独特优点。另外,如果利用专门的光学系统,配合已知地标的方位角和纬度,不仅能够实现快速对准,而且还可进行水平陀螺的标定和补偿。  相似文献   

6.
王跃钢  杨家胜  杨波 《航空学报》2012,33(12):2322-2329
针对纬度未知条件下捷联惯导系统(SINS)晃动基座的初始对准问题,提出晃动基座下的纬度估计算法和初始对准方法。前者通过惯性坐标系下两个不同时刻的重力加速度向量的夹角来求取纬度;后者利用惯性坐标系下的姿态更新来实时地反映载体在晃动干扰下的姿态变化,结合初始姿态的最优估计实现初始对准。理论分析表明,本文提出的纬度估计算法的误差主要由加速度计误差决定,陀螺误差和晃动干扰对其影响很小。仿真结果表明,本文提出的纬度估计算法和初始对准方法适用于纬度未知条件下晃动基座的初始对准。  相似文献   

7.
初始对准是惯性导航的关键技术之一,对准结果会直接影响系统的导航精度.针对光纤陀螺惯导系统,缩短对准时间、提高系统对准精度等技术难点,开展了高精度光纤惯导系统连续旋转对准技术研究,深入分析了常值陀螺漂移、随时间变化的陀螺漂移、陀螺标度因数常值误差、陀螺标度因数不对称误差、陀螺安装误差、陀螺随机游走等误差项对系统对准精度的影响,对比了现有旋转方案的优点与不足,提出了一种改进的单轴二位置旋转方案.试验结果表明,在采用该旋转方案的情况下,对准时间8min方位角对准精度可达到30"(1σ),具有重要的工程应用价值.  相似文献   

8.
张智永  周晓尧  范大鹏 《航空学报》2012,33(6):1044-1051
 针对陀螺稳定平台的漂移问题,建立了陀螺稳定跟踪装置在不同工作模式下陀螺漂移的数学模型,指出稳定模式下包含常值漂移和相关漂移的陀螺低频噪声是影响稳定精度的主要原因。提出一种自适应实时估计算法,采用卡尔曼滤波框架和滤波器收敛判据,结合Sage-Husa滤波和加权Sage-Husa滤波算法,利用跟踪器跟踪静止目标时输出的脱靶量信号对陀螺常值漂移和相关漂移进行估计。实验结果表明:该算法能够在系统模型和噪声特性均不准确的情况下使用,收敛时间小于3 s,估计均方差小于0.02 (°)/s,具有良好的鲁棒性和自适应能力。  相似文献   

9.
干涉型光纤陀螺温度漂移建模与实时补偿   总被引:1,自引:0,他引:1  
金靖  宋凝芳  李立京 《航空学报》2007,28(6):1449-1454
 分析了干涉型光纤陀螺(IFOG)温度漂移的影响因素,通过建立温度与陀螺模型参数之间的线性相关关系,推导出了光纤陀螺温度漂移的分布模型。为了提高陀螺温度漂移模型的适应性,设计了0.25,0.75,1.00 ℃/min三种变温速率的温度试验,并利用小波变换的方法分离数据中的噪声和趋势项。基于温度漂移的分布模型和最小二乘误差(LSE)准则,建立了多参量联合线性模型来估计陀螺温度漂移。采用升温过程和降温过程分段建模的方法将多参量联合线性模型算法进行了简化,并在现场可编程逻辑阵列(FPGA)中分时复用一个全串行有限冲激响应(FIR)滤波器实现了陀螺温度漂移的实时估计。仿真的温度补偿结果及实时的温度补偿结果显示,该方法可以使陀螺温度漂移减小到1/10~2/10。  相似文献   

10.
提出一种恒速偏频/机抖激光陀螺惯导系统方案。用一个不随偏频机构旋转 的机抖激光陀螺,改善恒速偏频激光陀螺惯导系统在偏频旋转轴方向的载体角速度测量 精度。给出了偏频旋转轴方向等效陀螺采样值的计算方法和关键结构参数标校方法;分 析了纯惯导的系统误差特性,在初始对准卡尔曼滤波模型中,增加了偏频旋转轴方向的 陀螺漂移以及耦合偏差造成的等效北向陀螺漂移作为误差状态。恒速偏频/机抖激光陀 螺惯导系统的半实物仿真实验结果表明:在静基座条件下,初始对准10min 后,方位角收 敛到10″ (1σ) 内; 初始对准20min 后, 纯惯导4h, 北向和东向位置误差最大值均小于 200m。  相似文献   

11.
黄卫权  方涛  王宗义 《航空学报》2020,41(9):323921-323921
综合校正技术可作为抑制格网惯导系统(INS)导航误差的有效手段。加速度计零偏所造成的水平姿态误差是导致综合校正中陀螺漂移估计精度受限的重要因素。针对这一问题,提出了一种改进的无阻尼综合校正方法。首先,推导了格网坐标系框架下估计加速度计零偏和姿态的目标函数;其次,介绍了无阻尼条件下综合校正的两个核心方程;最后设计了无阻尼两点校策略。综合校正前,在多普勒计程仪(DVL)提供的速度辅助下完成加速度计零偏的估计和补偿,以此消除加速度计零偏所造成的水平姿态误差对综合校正中陀螺漂移估计精度的影响。在两次间断的外部位置和航向辅助下通过所设计的综合校正策略完成对陀螺漂移的估计。校正策略中所涉及的水平姿态误差在DVL辅助下由参数估计方法估计得到。仿真及实验结果表明:与现有的研究相比,所设计的综合校正方案进一步减少了DVL的辅助时间,同时由于准确地估计和补偿了加速度计零偏,陀螺漂移的估计精度显著提高,该方案在抑制导航误差方面具备更明显的优势。  相似文献   

12.
光纤陀螺对温度较为敏感,输出受温度及温度变化率影响严重,在实际工作中需要对温度漂移误差进行建模补偿。传统多项式拟合方法如最小二乘法,无法很好地满足精度要求。因此,首先对光纤陀螺工作原理与温度漂移误差产生原理进行分析,得出光纤陀螺温度漂移误差特性。利用传统多项式模型对不同温度下启动的光纤陀螺进行建模补偿,得到补偿后的精度并不理想。利用新的二维插值模型对上述试验重新进行建模补偿,结果表明二维插值模型明显优于多项式模型,光纤陀螺的零偏稳定性由补偿前的0.0153(°)/h提高到0.0051(°)/h,有利于工程上应用。  相似文献   

13.
为了提高双轴旋转惯导重要参数标定的快速性和精度,提出一种快速自标定方法。通过设置不同的标定路径可以在10 min内完成陀螺和加速度计的零偏以及标度因数误差的标定。该方法利用基于姿态误差观测的卡尔曼滤波完成陀螺零偏的估计。通过六位置翻滚并以速度误差作为观测量进行卡尔曼滤波,完成加速度计的零偏及标度因数误差的标定。使天向陀螺绕方位轴旋转4周,使水平陀螺绕水平轴转动4周,通过计算旋转前后的姿态误差完成陀螺标度因数误差的估计。仿真和试验结果表明,该方法可以实现双轴旋转惯导重要参数10 min内完成自标定,且具有较高的精度。  相似文献   

14.
某型平台惯导系统采用方位旋转调制技术,通过对台体匀速转动的控制调制陀螺的漂移。台体的转速不是固定值,是随惯导系统所在地区而改变的,且台体转速异常必伴随方位陀螺故障。为了正确判断台体转速的理论是否正常,文章推导了转速的理论计算公式,不同地区惯导系统的实测数据表明实测值与理论计算值一致,验证了转速计算公式的正确性,为监控方位陀螺状态提供了技术途径。  相似文献   

15.
针对中小型水面舰船对航海惯导系统快速对准的实际需求,结合光纤陀螺的误差特性,提出一种针对航海光纤陀螺捷联惯导系统的快速对准方法。该方法充分考虑光纤陀螺启动特性对惯导系统对准精度的影响,在对准过程中保存光纤陀螺输出平稳后的数据,并利用基于正反向联合导航和滤波的方法,重复利用输出平稳后的数据,缩短对准时间,提高系统对准精度。经过实际的舰载试验验证表明,采取该方法后,所研制的航海光纤陀螺捷联惯导系统在对准时间20min条件下的导航精度相当于传统方法对准时间1h条件下的导航精度,显示了本方法的正确性和有效性,为航海光纤陀螺捷联惯导系统的进一步工程应用提供了有力支撑。  相似文献   

16.
对光纤陀螺振中输出信号进行频谱分析,发现在某些频率点下幅值很大,造成振动过程中陀螺存在较大的振中零偏漂移。本文提出了采用相关检测技术对误差信号进行分析的方法,理论仿真表明相关检测可提取噪声中隐含的周期性信号,研究发现了陀螺机械封装及工装固定是产生上述试验现象的主要影响因素,提出了相应的改进方案并进行了试验验证。试验证明理论分析正确,改进方案使陀螺振中零偏漂移降低了一个数量级。  相似文献   

17.
海上动态条件下静电陀螺监控器启动技术   总被引:2,自引:0,他引:2  
静电陀螺监控器在航天测量船列装是该设备在国内首次被应用于大型水面舰艇。在此之前其设计方案以及启动策略全部针对于水下舰艇,对于航天测量船而言没有任何经验可以借鉴。因此,探索静电陀螺监控器在海上动态条件下的高精度启动技术成为了当前该设备在航天测量船应用中的主要问题。针对该问题,通过分析静电陀螺监控器启动的关键过程,结合设备工作原理,重点对海上动态条件下静电陀螺监控器的启动技术和相关参数进行了研究,实现了静电陀螺监控器在海上动态条件下的高精度启动。该技术目前已经成熟并且成功应用于测量船测控任务。  相似文献   

18.
光纤陀螺的快速启动技术是应急武备系统、随动控制系统等特殊应用场合的首要要求。提出了一种通过变流调节模式来驱动光纤陀螺SLD光源的方法,建立了变流调节模型并计算了模型参数。通过辅助制冷器控制光源发光芯片温度,可使SLD光源输出光功率迅速达到稳定值。试验结果表明,高低温极限温度条件下SLD光源的启动时间可缩短为恒流模式的一半,特别是在低温启动时避免了SLD光源输出光功率的瞬间过冲带来的光纤陀螺中光电探测器的致盲效应。同时,光纤陀螺在极限高低温下的启动时间缩短1s,实现了光纤陀螺的快速启动。研究结果对光纤陀螺在高低温极限环境条件下的启动提供了有益的参考。  相似文献   

19.
大方位失准角下的SINS/GNSS组合对准系统呈非线性,采用传统的卡尔曼滤波方法进行初始对准易导致对准精度下降甚至滤波发散。基于此,提出了一种基于改进强跟踪自适应平方根容积卡尔曼滤波算法的组合对准方法。该方法采用QR分解求取协方差的分解因子,并在状态预测方差阵的平方根更新中引入多重渐消因子调整滤波增益;同时,基于Sage-Husa自适应滤波,引入改进的时变噪声估计器实时估计噪声的统计特性。仿真结果表明,采用改进的滤波算法进行大方位失准角下的组合对准,对准精度明显提高。  相似文献   

20.
基于旋转调制技术,提出一种利用单轴陀螺及单轴加速度计的寻北方法.该方法利用旋转过程中俯仰角和滚动角存在相互转换的特点,用单个加速度计的输出结果补偿初始滚动角及俯仰角的影响.通过设定中间变量建立起旋转过程中角速度及加速度与初始纬度及航向角之间的关系,建立以中间变量、陀螺漂移和加速度计零偏为状态量的卡尔曼滤波误差模型,并使用中间变量经过公式计算获得初始纬度及航向角的数值,实现单轴陀螺仪及单轴加速度计连续旋转的寻北计算.该方法不需要初始纬度信息和精确调平,即可完成寻北,具有简单、实用、可靠性高、成本低等特点.利用随机游走为0.001(o)/√h的光纤陀螺设计原理样机进行5min寻北试验,寻北精度可达0.5mil(1o).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号