首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
惯性导航系统的误差随时间累积,旋转调制技术可以有效地提高惯导系统的长航时精度,旋转调制方案是决定旋转式捷联惯导系统导航精度的一个重要因素.针对双轴旋转惯导系统,相较于16次序转位方案,提出了一种新的32次序双轴旋转调制方案.根据捷联惯导系统的误差方程,推导出旋转捷联惯导的误差方程,分析了误差补偿的机理,研究了惯性器件常值偏置误差、标度因数误差和安装角误差的传播特性.仿真结果表明,32次序双轴旋转调制方案相对于16次序转位方案有明显的优势,可以有效地降低姿态角误差和经纬度误差.  相似文献   

2.
惯性器件常值及慢变误差是影响捷联惯导系统精度的主要因素之一,所以在捷联惯导系统出厂前需要对常值及慢变误差参数进行标定。但这些误差参数会随时间发生变化,对于高精度捷联惯导系统,每次启动后需要对惯性器件的误差参数进行重新标校。针对光纤惯导系统,建立了IMU误差模型,并根据提出的旋转式捷联惯导系统自标校转位方案原则设计出了一种8位置自标校方案,对惯性器件标定参数进行激励和辨识,并建立了Kalman滤波状态方程及量测方程,对惯导系统误差参数进行在线标定。实验结果表明,该方案对其惯性器件误差参数能进行准确估计,具有一定的参考价值。  相似文献   

3.
针对旋转式惯导系统多位置初始对准可观测性的问题,对可应用于初始对准方案选择的姿态精度因子(ADOP)可观测性分析方法进行了研究.以惯导初始对准33维状态误差方程为研究对象,分析ADOP方法在旋转式惯导初始对准的转动顺序、停留时间及模型降阶方面的应用.理论分析和仿真结果均表明该方法控制灵活、直观有效,能够为旋转式惯导初始对准应用中最佳方案选择提供依据.  相似文献   

4.
基于“速度+姿态”快速传递对准的可观测性分析   总被引:2,自引:1,他引:1       下载免费PDF全文
惯导系统初始对准一般采用卡尔曼滤波器对初始姿态误差角进行估计,而在设计卡尔曼滤波器之前通常要对系统进行可观测性分析,确定卡尔曼滤波器的效果。捷联惯导系统的卡尔曼滤波模型在传递对准时,为线性时变系统,而线性时变系统的可观测性分析比较困难。文中采用一种依据系统矩阵的奇异值确定状态可观测度的方法对基于“速度+姿态”快速传递对准的卡尔曼滤波模型进行可观测性分析,结果表明该方法可直接简单地实现系统状态的可观测度分析。  相似文献   

5.
捷联惯导系统的一种系统级标定方法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对三轴转台定位精度高的特点,设计了一种基于速度误差和姿态误差角作为观测量的系统级标定方法.在捷联惯性测量组合(SIMU)的导航误差方程和惯性器件误差参数模型的基础上,推导了导航速度误差和姿态误差角与IMU的误差参数所呈现的关系,依此给出了最简单的位置编排准则.通过观测不同位置下捷联惯导系统的速度误差变化率和姿态误差角,辨识IMU的误差模型系数,进而达到高精度捷联惯导系统标定目的.  相似文献   

6.
针对捷联惯导系统初始对准过程中的大失准角情况,建立了基于欧拉平台误差角概念的捷联惯导系统(SINS)非线性误差模型,对于具有加性噪声的动态方程,当状态方程为非线性而观测方程为线性时,将一种简化的UKF滤波方法运用到捷联惯导系统初始对准中,并在静基座下对捷联惯导系统大失准角初始对准进行了仿真。仿真结果表明,随着失准角的增大,简化的UKF比EKF估计精度更高,是一种在进行捷联惯导系统大失准角条件下的初始对准时实用方法。  相似文献   

7.
捷联惯导系统标定技术对提高导航精度十分必要,而惯性导航系统标定选择的滤波方法直接影响到标定的精度。本文对不同状态的滤波估计方法进行了理论分析,利用不同标定仿真环境下所采用的卡尔曼滤波及其他滤波方法,对惯性器件误差及安装误差进行了估计,并通过仿真分析比较了惯性导航标定中各种滤波算法的特点及适用范围,得出了算法的应用建议,对惯导误差模型标定具有一定的工程指导意义。  相似文献   

8.
袁鹏  杨雨  陈光  晏亮  武雨霞 《导航与控制》2019,18(4):108-112
为实现舰载捷联惯导系统在航行中被快速标定的新需求,提出了一种捷联惯导系统在航行中快速在线标定的方法。首先,建立了简化的陀螺和加速度计输出误差方程,从而对Kalman滤波模型实现了降维。该模型以陀螺和加速度计零偏、标度因数误差等15个误差量为状态量,以速度误差和位置误差为量测量。设计了一种标定路径,该标定路径可由惯导系统中的双轴旋转机构实现。仿真结果表明,该方法能够在1800s内快速、准确地估计出15个误差量,具有工程实践价值。  相似文献   

9.
为了提高双轴旋转惯导重要参数标定的快速性和精度,提出一种快速自标定方法。通过设置不同的标定路径可以在10 min内完成陀螺和加速度计的零偏以及标度因数误差的标定。该方法利用基于姿态误差观测的卡尔曼滤波完成陀螺零偏的估计。通过六位置翻滚并以速度误差作为观测量进行卡尔曼滤波,完成加速度计的零偏及标度因数误差的标定。使天向陀螺绕方位轴旋转4周,使水平陀螺绕水平轴转动4周,通过计算旋转前后的姿态误差完成陀螺标度因数误差的估计。仿真和试验结果表明,该方法可以实现双轴旋转惯导重要参数10 min内完成自标定,且具有较高的精度。  相似文献   

10.
针对车载武器捷联惯导系统动基座传递对准问题,研究了传递对准的基本原理,建立了地面武器弹载子惯导系统(SINS)动基座速度匹配传递对准的误差模型,并考虑SINS的惯性器件误差。采用了零速校正方法用以提高载车主惯导系统(MINS)的导航精度。根据速度匹配传递对准原理,推导了速度匹配方式下MINS与SINS导航解算速度之差的量测方程。在此基础上,设计了一种传递对准卡尔曼滤波器,并进行了仿真研究。仿真结果表明:SINS速度匹配传递对准在短时间内即可估计出SINS的水平失准角,对准精度可达到0.4'以内,方位失准角在经过多次零速校正过程中的加减速机动后,对准精度达到0.7'以内。  相似文献   

11.
针对惯导系统高精度自标定的需求,提出了一种基于逆向导航的双轴旋转惯导系统自标定方法。通过转位运动对系统误差进行激励,利用Kalman滤波器进行误差估计,同时存储标定数据,待正向导航滤波结束后,利用逆向导航算法对存储数据二次利用,继续进行误差估计,直到所有状态量收敛到一定精度,实现了对数据的充分挖掘。仿真和试验结果表明,该方法可以实现对双轴旋转惯导系统的全参数自标定,提高了标定精度。  相似文献   

12.
在基于对偶四元数的捷联惯导解算方法的基础上,推导了以惯性系作为导航系的惯导误差方程,在此基础上设计了卡尔曼滤波组合导航算法。通过激光惯导跑车采集数据,进行了仿真分析,试验结果表明,该组合导航算法能有效的消除惯导累积的速度误差和位置误差,相比于目前广泛应用的INS/GPS组合导航算法,本文描述了INS/GPS组合导航的另一种实现方式,获得了相当的精度,具有一定的工程应用价值。  相似文献   

13.
GPS receivers with provisions for inertial navigation system (INS) aiding are designed with internal Kalman filters that model generic INSs and process the basic GPS pseudorange and deltarange (range-rate) data to produce an output of inertially-smoothed, “GPS-derived” position and velocity. These Kalman filters model only the basic nine INS errors (position, velocity, and tilt) and do not model any INS gyro or accelerometer errors. It was found that a significant performance improvement could be achieved under conditions of degraded GPS satellite availability by augmenting this type of filter with the six INS gyro and accelerometer bias errors. It is, therefore, recommended that serious consideration be given to incorporating these states into the design of the GPS internal Kalman filter  相似文献   

14.
目前,行人导航定位技术已经深入社会的众多领域,受到诸多学者的广泛关注。针对行人跑步状态,研究了一种惯性/零速/GPS室内外无缝组合导航定位方法。首先提出了可靠的、适用于行人跑步零速检测的方法,有效提高了在行人跑步状态下的零速检测的准确性。针对GPS信号容易受到高楼、高架等环境的干扰及在室内容易完全丢失的特点,提出了基于BP神经网络的GPS可用信号筛选方法,提高了GPS信息的可靠性与精准性。在此基础上,研究了基于可变量测的Kalman滤波器,实现了惯性/零速/GPS信息的有效融合,显著提高了在行人跑步状态下的导航定位精度。试验结果表明,所提出的这种适用于跑步状态的惯性/零速/GPS室内外无缝组合导航定位方法的平均定位误差可减小到行人跑步总里程的1%以内。  相似文献   

15.
卡尔曼滤波在某型组合导航系统模拟器中的应用   总被引:3,自引:3,他引:0  
为提高某型GPS/INS组合导航系统模拟器模拟数据的真实性和飞行软件包、GPS模拟器、组合导航系统模拟器三者交联的有效性,在该模拟器中设计了卡尔曼滤波器。文中在介绍模拟器工作原理的基础上,建立了GPS/INS位置与速度组合方式下的卡尔曼滤波器的状态方程和量测方程,用U-D分解法建立了卡尔曼滤波方程,给出了纯惯导及组合后系统的位置与速度误差仿真曲线,并对仿真结果进行了系统测试,最后与其它模拟器进行了组网导航训练测试。  相似文献   

16.
惯导的误差随着时间增长是积累的,可采用里程计辅助捷联惯导构成纯自主的车载组合导航系统.利用捷联惯导的速度和里程计测量的速度之差作为观测量,通过卡尔曼滤波技术校正惯导的导航参数,可以有效地抑制惯导误差的积累,提高导航参数的精度.本文推导了组合导航系统的模型,从理论上用特征值方法分析了系统的可观测度,进而设计轨迹进行了仿真...  相似文献   

17.
基于相对导航的多平台INS误差联合修正方法   总被引:3,自引:0,他引:3  
在机群协同编队飞行中,编队成员仅装载惯性导航系统(INS)的方式具有隐蔽、抗干扰等明显的优势,但随着航时的增加,INS误差将不断累积.使导航系统失效,为此,提出基于相对导航的多平台INS误差联合修正方法.首先,建立了编队成员相对导航运动模型及非线性观测模型,采用量测重构技术构造了伪线性观测模型并推导了观测噪声协方差矩阵...  相似文献   

18.
《中国航空学报》2016,(6):1695-1709
Inertial navigation system/visual navigation system (INS/VNS) integrated navigation is a commonly used autonomous navigation method for planetary rovers. Since visual measurements are related to the previous and current state vectors (position and attitude) of planetary rovers, the performance of the Kalman filter (KF) will be challenged by the time-correlation problem. A state augmentation method, which augments the previous state value to the state vector, is commonly used when dealing with this problem. However, the augmenting of state dimensions will result in an increase in computation load. In this paper, a state dimension reduced INS/VNS integrated nav-igation method based on coordinates of feature points is presented that utilizes the information obtained through INS/VNS integrated navigation at a previous moment to overcome the time rel-evance problem and reduce the dimensions of the state vector. Equations of extended Kalman filter (EKF) are used to demonstrate the equivalence of calculated results between the proposed method and traditional state augmented methods. Results of simulation and experimentation indicate that this method has less computational load but similar accuracy when compared with traditional methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号