首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
刘冰  高仍清 《飞行力学》1995,13(2):51-57,62
采用六自由度全量运动方程和三通道飞行控制系统模型,使用时域动态响应的方法,研究了F-16飞机在大迎角下飞行的深失速特性和尾旋特性,并对尾旋进入和改出的机理进行了探讨。通过分析研究可午出结论:F-16飞机具有深失速特性,若进入深失速后,可用先拉杆后推杜操纵方法改出;F-16飞机进入尾旋的主要原因是航向自转和偏航、滚转气动交感;在改出尾旋过程中,方向舵操纵力矩、航向静不稳定力矩、偏航惯性交感力矩对制止  相似文献   

2.
研究了高平尾布局飞机的气动特性。使用失速改出伞是飞机改出深失速的重要途径,但如何确定失速改出伞的关键参数(阻力面积等)却没有现成的方法。以ARJ21-700飞机为例,分别使用公式分析法、类比法综合估算出失速改出伞的关键参数,通过模型自由飞和模拟仿真分析验证其具有足够效能将飞机改出深失速状态。形成了一套新机失速改出伞的设计方法和关键数据图表,可供其他型号飞机失速改出伞的设计研制使用。  相似文献   

3.
ARJ21飞机是我国自行研制的具有典型T尾布局特点的先进支线飞机。失速和失速特性试飞是ARJ21飞机适航取证试飞最重要的试飞项目之一。高平尾(T尾)布局飞机可能存在深失速运动模态,给飞机的失速特性试飞带来安全风险。本文首先分析了高平尾(T尾)布局飞机的空气动力学特点,剖析了"深失速"现象的产生原因,并在此基础上以ARJ21飞机为算例,结合具体的风洞实验数据库,应用工程估算的方法对动导数进行了补充完善,其次建立了适合预测飞机失速和深失速运动方程的空气动力学模型,并对飞机的运动特性特别是深失速特性进行了仿真计算,计算结果与实际试飞结果取得了较好的一致性;最后选择深失速状态作为失速改出伞设计的临界状态,建立失速改出伞的数学模型,对失速改出伞改出深失速的动态过程进行了仿真计算,验证了失速改出伞改出深失速的设计参数,为失速改出伞的研制提供了参考依据。  相似文献   

4.
以非结构混合网格上的雷诺平均N-S方程(RANS)求解方法为基础,对采用T型尾翼的某民机外形在大迎角深失速情况下的粘性绕流进行了数值模拟,获得了该机在巡航和降落外形在深失速情况下的气动特性变化规律.通过对T型尾翼深失速情况下的流动特点进行分析,解释了T型尾翼布局飞机在深失速情况下俯仰力矩系数会随迎角出现不利于纵向稳定性的变化趋势的原因.  相似文献   

5.
采用机械操纵系统的飞机相对电传控制飞机不具备飞行包线保护功能,驾驶员可能在误操作情况下使飞机进入失速状态,特别是新机研制试飞和失速飞行试验。失速自动改出装置通过控制反驱作动器带动操纵系统,抑制驾驶员将飞机操作进入失速,并在飞机进入失速后帮助驾驶员改出失速。模糊控制理论具备常规控制理论所不具备的很多优势,可以使控制律更简单、直观和有效,用于失速改出控制将使系统更加简单易行。  相似文献   

6.
针对某型飞机平尾结冰后的动态响应问题,利用结冰参数建立的平尾结冰参量模型,仿真分析了无操纵情况下平尾结冰对巡航特性的影响,以及平尾结冰后升降舵单位阶跃的纵向操纵响应,并研究了不同平尾结冰严重程度下飞机在进近与着陆过程中的动态响应及平尾失速特性,获得了平尾结冰对飞机动力学特性的影响规律.  相似文献   

7.
周欲晓  刘昶 《飞行力学》1996,14(4):19-24
参考F-15战斗机数学模型和原始数据,通过分支分析和突变理论方法以及数值积分时间历程法的应用,估算出F-16飞机的分支图。分析并参考飞机分支图特性,研究飞机深失速进入特性及其改出特性。  相似文献   

8.
JL8飞机失速尾旋飞行试验研究   总被引:2,自引:0,他引:2  
叙述了JL8飞机失速尾旋试飞状态、试飞试验和试飞结果。试飞结果表明,JL8飞机具有良好的大迎角特性及低速和高速失速特性。其正飞尾旋获得了三种模态,即“落叶飘”型非定常尾旋、非定常陡振荡尾旋和左均匀平尾旋;倒飞尾旋呈不稳定型态。而且各种尾旋都能成功地改出。另外,还评价了误操纵对失速和尾旋的影响。可供飞机大迎角和失速、尾旋特性研究人员参考。  相似文献   

9.
三种典型过失速机动的仿真   总被引:2,自引:1,他引:1  
从飞机的六自由度运动方程出发,结合推力矢量控制系统,进行三种典型过失速机动(“眼镜蛇”,尾冲,Herbst机动)的数值仿真,主要研究了每一种机动的操纵规律;失速迎角后大迎角不对称气动力和力矩及气动迟滞对完成过失速机动的影响;推力矢量在实现过失速机动中所起到的作用.此外,对不同初始飞行状态也给予了讨论.仿真结果表明:推力矢量是实现过失速机动的有效手段;在设计操纵规律时,应予以充分考虑到不对称气动力矩的影响;气动迟滞、进入速度对过失速机动的影响也不容忽视.  相似文献   

10.
飞机深失速改出特性   总被引:1,自引:0,他引:1  
辛建华  凌茂芙 《飞行力学》1993,11(2):44-49,63
用相轨迹法、时间历程法、分支突变理论(BACTM)法研究了深失速的改出过程和一些改出特性,并进一步分析了深失速的两种改出方法:静态改出法和动态改出法。最后又简要地分析了影响深失速及其改出特性的因素。  相似文献   

11.
高速自旋飞行器气动参数辨识   总被引:1,自引:0,他引:1  
根据高速自旋飞行器运动的特点,发展了气动参数辨识的一种数学模型,辨识参数包括静态气动导数、气动阻尼导数和马格努斯力矩导数等。仿真算例证实了该数学模型的有效性。应用该数学模型分析处理了某高速自旋飞行器的飞行试验数据.辨识获得了其主要气动参数,并分析了若干常见误差源对气动参数辨识结果的影响。  相似文献   

12.
冯亚昌  崔金宝 《航空学报》1993,14(10):540-546
以刚体系动力学理论为基础,建立飞机、起落架六自由度全量非线性方程,根据有侧风时着陆过程中驾驶员的操纵特点,提出比较符合实际情况的操纵逻辑,以及用3个单轴操纵的驾驶员模型,通过采用分时采集、分时处理飞行状态信息和分时操纵的方式,将它们有机地综合成~个同时做三轴操纵时的驾驶员模型。最后,对所建立的人-机闭环系统模型编制了相应的仿真软件,并对某验证机进行了着陆品质分析,其结果与试飞情况比较吻合。  相似文献   

13.
孙静  张彬乾  杨广珺 《航空学报》2012,33(3):430-437
 针对某前掠翼翼身融合无尾布局由鸭面与尾舵组成的纵向基本控制舵面在大迎角状态操纵效率降低的问题,采用数值模拟方法研究一种机身下表面嵌入式新概念纵向操纵舵面实施大迎角纵向操纵补充的可行性。提出了嵌入式舵面的设计思想,研究了嵌入式舵面高度、偏度及其与尾舵组合时的相对位置等参数影响,提出了嵌入式舵面的设计原则、流动机理以及提供低头力矩增量的作用原理。研究结果表明:嵌入式舵面是无尾布局飞机大迎角纵向操纵的高效补充措施,单独使用,最大可提供约平衡10°迎角的低头操纵力矩,并对升阻特性影响很小;与尾舵组合使用,在研究迎角范围内(迎角α≤32°),可提供约6°迎角的低头平衡力矩增量,且对升阻性能产生有利影响。本文工作可为其他翼身融合无尾布局的气动舵面设计提供借鉴。  相似文献   

14.
飞行载荷分析是一项复杂而繁重的工作,研究一种适用于方案设计阶段飞行载荷的快速分析方法,对于提高飞行载荷的计算效率具有重要意义。基于小扰动线性分析理论,归纳翼身气动载荷、平尾气动载荷、垂尾气动载荷、舵面铰链力矩的理论计算方法,以及升力面的气动载荷分布、惯性载荷分布、剪力和弯矩的工程计算方法。针对某型单座竞技飞机的飞行载荷,以外形尺寸、质量特性和气动导数作为输入,通过Matlab 仿真分析,得到各个部件的气动载荷、惯性载荷、舵面铰链力矩、剪力和弯矩等参数响应。结果表明:该简化方法能够根据较少的输入数据快速求解出各个动力学参数,计算结果可以作为方案设计阶段结构设计的载荷输入。  相似文献   

15.
平尾积冰对飞机纵向气动参数的影响   总被引:3,自引:0,他引:3  
徐忠达  苏媛  曹义华 《航空学报》2013,34(7):1563-1571
建立飞机纵向动力学模型,基于最大似然参数估计原理,设计用于辨识飞机纵向气动参数的辨识系统,并对辨识系统的正确性和精确度进行了验证.以DHC-6飞机飞行试验数据为依据,对未积冰飞机和两种平尾积冰冰型的飞机进行纵向气动参数辨识,通过对比3种情况下飞机纵向气动参数的辨识结果,定量分析了平尾积冰对飞机纵向气动参数的影响.结果表明:平尾积冰将导致飞机纵向气动特性恶化,俯仰阻尼可减小15%,升降舵效率可降低20%,对飞行稳定性、操纵性以及飞行安全构成一定的威胁.  相似文献   

16.
人—机闭环系统的驾驶员模型研究   总被引:1,自引:0,他引:1  
崔金宝  高峰 《飞行力学》1994,12(3):53-58
通过对驾驶员操纵行为的分析,提出了在人-机闭环系统研究中驾驶员环节数学描述的要求,对驾驶员的传递函数模型,最优控制模型和模糊控制模型进行了分析研究,并对驾驶员模型在人-机闭环系统动态品质分析方面的应用进行了研究。  相似文献   

17.
驾驶员模型参数与飞行品质关系的研究   总被引:1,自引:0,他引:1  
屈香菊  方振平 《航空学报》1996,17(3):348-353
按 Neal-Smith准则要求,探讨了驾驶员模型参数与飞机飞行品质之间的关系。建立Neal-Smith准则的数学表达式,导出系统闭环幅频、相频特性对驾驶员模型参数变化的灵敏度公式,用牛顿迭代法,计算出满足 Neal-Smith准则条件的驾驶员模型参数,得出相应的闭环幅频、相频特性曲线,找得相应的驾驶员对飞行品质的评定等级。用该方法来计算和检查飞机的飞行品质是非常简捷的,且能看到驾驶员与飞行器之间关系是否合适和匹配  相似文献   

18.
基于超静定配平的机动载荷控制风洞试验   总被引:1,自引:1,他引:0  
介绍了俯仰机动载荷减缓(MLA)在某运输类飞机缩比风洞试验模型上的应用,旨在通过风洞试验研究一种基于超静定配平原理的机动载荷控制方法。首先,对模型飞机纵向超静定配平方法进行了研究并从理论上揭示通过其减缓机动载荷的基本原理;然后,依据超静定配平原理设计了MLA控制律,通过反馈模型飞机等效过载驱动副翼偏转减小机翼载荷,同时偏转升降舵来保持飞机的俯仰机动性能;最后,依次实施了超静定配平试验,气动伺服弹性稳定性试验以及机动载荷减缓试验,分别用以确定MLA控制律参数,检查控制系统稳定性以及获取俯仰机动时的系统响应。试验结果表明:在MLA控制律作用下,机翼根部弯矩增量比MLA控制律关闭时减小了10%以上,而模型飞机的俯仰机动性能基本保持不变;MLA控制律的加入使控制增稳系统稳定性略有下降;通过超静定配平试验确定MLA控制参数的方法有效提升了MLA控制律设计可靠性,使翼根弯矩减缓量接近目标值。研究工作为运输类飞机的机动载荷控制设计与试验提供了一种可行途径。  相似文献   

19.
《中国航空学报》2020,33(3):1107-1118
Electro-hydraulic servo-valves are widely used components in the mechanical industry, aerospace and aerodynamic devices which precisely control the airplane or missile wings. Due to the small size and complex structure in the pilot stage of deflection flapper servo-valves, accurate mathematical models for the flow and pressure characteristics have always been very difficult to be built. In this paper, mathematical models for the pilot stage of deflection flapper servo-valve are investigated to overcome some gaps between the theoretical formulation and overall performance of the valve by considering different flow states. Here, a mathematical model of the velocity distribution at the flapper groove exit is established by using Schlichting velocity equations for in-compressible laminar fluid flow. Moreover, when the flow becomes turbulent, a mathematical model of pressure characteristics in the receiving ports is built on the basis of the assumption of the collision between the liquid and the jet as the impact of the jet on a moving block of fluid particles. To verify the analytical models for both laminar and turbulent flows, the pressure characteristics of the deflection flapper pilot stage are calculated and tested by using numerical simulation and experiment. Experimental verification of the theory is also presented. The computed numerical and analytical results show a good agreement with experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号