首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
可熔体加工热塑性聚酰亚胺研究进展   总被引:4,自引:0,他引:4       下载免费PDF全文
从发展航空航天、微电子、汽车及电器等高技术领域先进材料的角度,阐述了可熔体加工热塑性聚酰亚胺的发展现状和最新进展;报告了热塑性聚酰亚胺的挤出成型、注射成型、纺丝、涂覆等工艺;讨论了热塑性聚酰亚胺的分子结构对聚酰亚胺热性能的影响;介绍了几种最新热塑性聚酰亚胺的特点和典型应用实例;指出开发新型热塑性聚酰亚胺应综合考虑可加工性、耐热性、成本以及原料来源。  相似文献   

2.
为了解决耐300 ℃聚酰亚胺复合材料在热压成型工艺过程中尚未解决的基础性科学问题,推动其在飞行器主承力结构件的成熟应用,本文通过DSC、FTIR、流变、TGA和力学性能测试方法,系统分析了耐300 ℃聚酰亚胺树脂化学反应特性及其复合材料力学性能。结果表明,聚酰亚胺树脂于230 ℃完全酰亚胺化,1 ℃/min升温速率下最低黏度为86 Pa·s,采用优化成型工艺制备的复合材料具有良好的内部质量和力学性能。  相似文献   

3.
综述了聚酰亚胺复合材料的研究进展和在航空发动机领域的应用现状。重点介绍了PMR型聚酰亚胺树脂基复合材料的性能特点及其在成熟发动机型上的应用情况,论述了聚酰亚胺复合材料衬套的制备技术、典型产品和研究进展,指出降低成本、提高耐热性、改善工艺稳定性、建立材料数据库是未来航空发动机聚酰亚胺复合材料产品的发展方向。  相似文献   

4.
综述了国内外聚酰亚胺树脂基复合材料的研究现状和在航空航天等领域的应用现状,简要介绍了国内在改进聚酰亚胺基复合材料流变性能、提高耐热性和力学性能以及聚酰亚胺蜂窝夹层结构和石英增强聚酰亚胺复合材料等方面所取得的研究进展,并展望了该技术的发展方向和研究重点.  相似文献   

5.
以聚酰亚胺、氧化锆及金属铅粉为主要原材料,制备了聚酰亚胺基复合材料,并进行了X-射线衍射、紫外射线分析.结果表明,聚酰亚胺/氧化锆+金属铅复合材料比纯聚酰亚胺具有更好的X-射线防护性能,耐热性能仍然很好.  相似文献   

6.
聚酰亚胺是一种耐热性极好的聚合物,耐辐射、耐腐蚀、力学性能和电性能突出,广泛用于航空航天、军事、电子等领域。聚酰亚胺泡沫塑料不仅保持了其耐温、阻燃的性能,还具有突出的透波性能,且质量轻、柔性好、使用方便,可用于飞机、舰船、汽车等的生产,作为隔热、隔声、阻燃材料,尤其是在军事设施中取代聚氨酯泡沫和岩棉,不仅可减轻装备质量,还大大提高了装置的安全性。  相似文献   

7.
利用TGA、DSC、IR和DMTA等现代分析手段考察了PMR-Ⅱ型聚酰亚胺树脂KH-305-50A(长期使用温度达371℃/1000h)的化学反应特性,研究结果表明,该含氟的耐高温树脂在加热过程中发生了一系列复杂的化学反应,在115℃-300℃之间进行了酰胺化和酰亚胺化反应,生成了聚酰亚胺预聚体;280℃-470℃该预聚体发生加成型的交联固化反应,且在370℃-380℃之间固化反应最快。  相似文献   

8.
文摘综述了近年来国内外在有机无机杂化聚酰亚胺树脂及其复合材料方面的研究进展,重点介绍了含笼状倍半硅氧烷和硅氧烷结构的有机无机杂化聚酰亚胺树脂的制备方法,对树脂的分子结构与其耐热性和热氧化稳定性之间的关系进行了分析总结,并对有机无机杂化聚酰亚胺树脂及其复合材料的应用和未来发展进行了探讨。  相似文献   

9.
高性能聚酰亚胺工程塑料   总被引:1,自引:0,他引:1  
由于军事和航天发展的需要,人们就开始对高耐热性高分子材料的开发研究,作为高性能复合材料基体的聚酰亚胺以其优异的耐热性能、力学性能、电性能、阻燃性能和化学性能、耐辐射性能等而得到大力的发展。  相似文献   

10.
对国内外PMR型聚酰亚胺树脂基复合材料的研究现状以及在航空航天等领域的应用进行了总结.简要介绍了国内在改进复合材料成型工艺、提高耐热性和力学性能等方面所取得的研究进展,列举了新型耐高温聚酰亚胺复合材料的流变、力学和物理性能等,并展望了该技术的发展方向和研究重点.  相似文献   

11.
以PTES和APS为硅源,在TEAOH的催化作用下采用水解共缩合法合成了二元胺POSS,经FTIR、1H-NMR,13C-NMR,29Si-NMR测试表明,产物具有设计的理想结构。将合成的二元胺POSS与ODA一并与PMDA反应得到二元胺POSS修饰的聚酰胺酸,经热酰亚胺化后得到了一系列不同二元胺POSS含量的聚酰亚胺杂化薄膜。利用TGA、微机控制拉力试验机、等离子体原子氧产生装置分别对杂化薄膜的热性能、力学性能、抗原子氧侵蚀性能进行了研究。结果表明,杂化薄膜耐热性良好,但力学性能有所降低,当二元胺POSS的摩尔百分含量达到7%时,杂化薄膜的抗原子氧性能提高了将近4倍。  相似文献   

12.
本文阐述了该漆的性能、研制和使用,可供有关人员参考. 一、概述高温绝缘浸渍漆,是发展大功率,长寿命航空电源电机的关键材料.传统上采用聚酰亚胺漆和硅有机漆,但国产聚酰亚胺漆工艺性差。毒性大,价格贵;硅有机漆粘结力小,附着力差,抗溶剂能力弱,干燥慢.为了满足航空电源发展的需要,我们研制出耐热性高,粘结强度大,抗过载能力强,工  相似文献   

13.
原位聚合制备了纳米二氧化硅(SiO2)目标杂化聚酰亚胺(PI)复合材料膜。实验表明,采用溶胶 凝胶法原位聚合制备的纳米SiO2 PI杂化膜在SiO2含量达到20wt%时,仍然是透明的,而且根据电镜观察,SiO2粒子在PI基体中均匀分散。随着SiO2含量的增加,杂化PI复合材料膜的耐热性、动态力学性能、拉伸性能均有不同程度的提高,且吸湿性降低。分析表明,SiO2前驱体在反应初期即被"固定"在聚酰胺酸大分子链的羧基(-COOH)上,然后在酰亚胺化过程中原位生成纳米SiO2粒子,SiO2粒子表面上的大量高活性硅羟基(-Si-OH)与PI大分子链上的羰基(>C=O)形成氢键而实现目标杂化。  相似文献   

14.
耐371℃ PMR型含异构联苯结构的聚酰亚胺树脂及复合材料   总被引:1,自引:1,他引:0  
采用活性单体原位聚合方法,由2,3,3',4'-联苯四甲酸二乙酯为芳香族二酸二酯、对苯二胺与间苯二胺混合物为芳香族二胺、降冰片稀二甲酸单乙酯为反应性封端剂制备了系列PMR型聚酰亚胺树脂.研究了树脂的化学结构及其计算分子量等对其成型工艺性能和耐热性能的影响规律.以优选树脂体系为基体与碳纤维复合制备的碳纤维增强聚酰亚胺树脂基复合材料表现出优良的耐热性能与力学性能,室温下,弯曲强度为1 560 MPa,弯曲模量为137 GPa,层间剪切强度为56 MPa,在370℃的高温下,其力学性能保持率大于50%.  相似文献   

15.
综述了近年来耐高温聚酰亚胺胶黏剂的研究发展状况,对聚酰亚胺胶黏剂尤其是加成型聚酰亚胺胶黏剂的化学合成方法和胶黏剂结构与性能的关系进行了分析与总结,并对耐高温聚酰亚胺胶黏剂的应用和未来发展趋势进行了展望。  相似文献   

16.
发动机用耐高温聚酰亚胺树脂基复合材料的研究进展   总被引:3,自引:0,他引:3  
综述耐高温热固性聚酰亚胺树脂及复合材料的研究进展.经过近四十年的发展,形成了多种封端剂封端的热固性聚酰亚胺树脂,其中主要是降冰片烯和4-苯乙炔基苯酐封端聚酰亚胺,长期使用温度涵盖280 ~ 450℃的聚酰亚胺树脂及其复合材料体系.低成本、高韧性和有机无机杂化聚酰亚胺树脂基复合材料将是聚酰亚胺复合材料发展的主要方向.  相似文献   

17.
可注射成形的聚酰亚胺Aurum   总被引:1,自引:0,他引:1  
可注射成形的聚酰亚胺Aurum1984年,日本三井远龙公司从NASA获得聚酰亚胺的专利,经重新进行改型后得到一种可以进行熔体加工、注射成形或挤压的产品。1989年将可注射成形的热塑性聚酰亚胺引入市场,它是目前市售唯一可以进行熔体加工的聚陆亚胺,叫做A...  相似文献   

18.
研究了几种热塑性聚酰亚胺泡沫的动态热力学性能和热失重性能。动态黏弹性分析表明,聚酰亚胺泡沫单体刚性越强,自制纯聚酰亚胺泡沫的Tg越高,所研究的几种热塑性聚酰亚胺泡沫的Tg相差达55℃;与TEEK系列相比,自制泡沫的Tg稍高;加入玻璃微珠和碳纳米管(CNT)对泡沫的Tg影响不大,加入30%(质量分数)玻璃微珠Tg只提高6℃,加入5%(质量分数)CNTTg只提高5℃。热失重分析表明,聚酰亚胺泡沫单体刚性越强,其起始分解温度越高,热失重5%时的起始分解温度达550℃;加入玻璃微珠和碳纳米管能明显提高聚酰亚胺泡沫的起始热失重温度,热失重5%时,加入30%(质量分数)玻璃微珠可使起始热失重温度提高到593℃,加入5%(质量分数)CNT可使起始热失重温度提高到589℃。  相似文献   

19.
宇航应用的耐热胶粘剂   总被引:1,自引:0,他引:1  
本文着重介绍了一些耐热环氧、聚酰亚胺胶粘剂的性能和用途及其在宇航方面的应用。环氧胶粘剂是耐热胶粘剂中的一个重要类型,具有粘合强度高、综合性能良好、使用工艺简便等优点,一般在200℃下长期使用。从耐热性看,以超细纯铝粉为最佳填料。在环氧胶粘剂中,环氧-酚醛胶粘剂性能优良,该胶既可室温固化,又可高温固化。AD-468336对九种高温结构环氧胶粘剂进行了评价。这九种胶粘剂耐高温、结构性能均良好,主要用于军械、  相似文献   

20.
《航空制造工程》2009,(1):72-72
美国空军研究实验室正在资助聚酰亚胺预浸带的认证工作,这是一种非甲撑替二苯胺(MDA)预浸带,可用于飞机机体及发动机。美国空军及NCAMP均认为聚酰亚胺基复合材料可用来代替日前许多航空零部件制造用钛合金。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号