首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The prime issues raised in any all-electric airplane discussion are (1) is the electric power system as reliable and trustworthy as a hydraulic power system; (2) can electromechanical flight control actuators perform satisfactorily, i.e., can the performance match that of hydraulic actuators; (3) can redundant electromechanical actuation systems (EMAS) be designed to equal the flight safety reliability of dual tandem hydraulic actuators; and (4) can satisfactory solutions be found or developed for dissipating the heat generated in actuators and power controllers. The first question should be inconsequential since it is assumed that the all-electric aircraft will be equipped with a fly-by-wire (FBW) flight control system (FCS) which is already dependent upon an uninterrupted supply of electrical power. Design studies and hardware already developed show that the answer to question (2) is that EMAS outperform hydraulic actuators, particularly under load. The answer to question (3) is not as clear primarily because the issue has not been addressed in any depth. As posed the answer must be yes, but with the proviso that the weight might be greater than currently predicted. Studies have shown that we can cope with the heat dissipation issue addressed in question (4) in the case of motors and inverter/power controllers. The projections regarding usage of EMAS and the future of the all-electric airplane must be based on the type of vehicle (small subsonic transport, large transport, or military tighter) and the economics involved.  相似文献   

2.
In aircraft wing design, engineers aim to provide the best possible aerodynamic performance under cruise flight conditions in terms of lift-to-drag ratio. Conventional control sur-faces such as flaps, ailerons, variable wing sweep and spoilers are used to trim the aircraft for other flight conditions. The appearance of the morphing wing concept launched a new challenge in the area of overall wing and aircraft performance improvement during different flight segments by locally altering the flow over the aircraft's wings. This paper describes the development and appli-cation of a control system for an actuation mechanism integrated in a new morphing wing structure. The controlled actuation system includes four similar miniature electromechanical actuators dis-posed in two parallel actuation lines. The experimental model of the morphing wing is based on a full-scale portion of an aircraft wing, which is equipped with an aileron. The upper surface of the wing is a flexible one, being closed to the wing tip; the flexible skin is made of light composite materials. The four actuators are controlled in unison to change the flexible upper surface to improve the flow quality on the upper surface by delaying or advancing the transition point from laminar to turbulent regime. The actuators transform the torque into vertical forces. Their bases are fixed on the wing ribs and their top link arms are attached to supporting plates fixed onto the flex-ible skin with screws. The actuators push or pull the flexible skin using the necessary torque until the desired vertical displacement of each actuator is achieved. The four vertical displacements of the actuators, correlated with the new shape of the wing, are provided by a database obtained through a preliminary aerodynamic optimization for specific flight conditions. The control system is designed to control the positions of the actuators in real time in order to obtain and to maintain the desired shape of the wing for a specified flight condition. The feasibility and effectiveness of the developed control system by use of a proportional fuzzy feed-forward methodology are demon-strated experimentally through bench and wind tunnel tests of the morphing wing model.  相似文献   

3.
The application of magnetostriction in the design of a hybrid, electromechanical/hydraulic high-performance linear (large force and stroke) and/or rotational (large moment and angle) actuator is considered. The design concept combines the high power density of actuation possible with magnetostriction (approaching 0.1 HP/cm3 of the magnetostrictive material assuming 3 kHz excitation frequency) and the design flexibility of hydraulics. The objective of the research described was to validate the concept theoretically and to study alternatives and improvements. The system, as currently envisioned, offers very small packaging volume (approximately an order of magnitude smaller than conventional electromechanical systems), flexible packaging (relative location of the major system components is not critical), and easy control (precise control of actuation speed, quick reverse time, and inherent position lockup). The major technical problems associated with the design are outlined, and results of a computer simulation of a prototype actuator are presented  相似文献   

4.
The author examines a proposal published by D.T. Glass-Hooper (see Flight, Dec. 21, 1916) for controlling an aircraft using solenoids. He than discusses the control systems used almost universally in aircraft through the end of WWII, and the gradual evolution to almost all-electrical flight control (the hydraulic actuator is the last major nonelectrical element). Laboratory testing of electric actuators is considered and the C-141 Aileron electric actuation system is presented. The High Technology Test Bed program, which was implemented to provide a research aircraft for the development and evaluation of aerodynamic, avionic, and flight control system concepts, is described  相似文献   

5.
Moving towards a more electric aircraft   总被引:10,自引:0,他引:10  
The latest advances in electric and electronic aircraft technologies from the point of view of an "all-electric" aircraft are presented herein. Specifically, we describe the concept of a "more electric aircraft" (MEA), which involves removing the need for on-engine hydraulic power generation and bleed air off-takes, and the increasing use of power electronics in the starter/generation system of the main engine. Removal of the engine hydraulic pumps requires fully-operative electrical power actuators and mastery of the flight control architecture. The paper presents a general overview of the electrical power generation system and electric drives for the MEA, with special regard to the flight controls. Some discussion regarding the interconnection of nodes and safety of buses and protocols in distributed systems is also presented  相似文献   

6.
多电飞机作动系统的体系结构优化(英文)   总被引:3,自引:0,他引:3  
多电技术的深入发展使得飞机上可选择的功率源和作动器种类越来越多,这导致在机载作动系统体系结构优化设计过程中出现了不同功率源和作动器组合的极端复杂性,传统的"试凑"法已无法完成设计任务。首先介绍了多电飞机飞控作动系统(Flight Control Actuation System,FCAS)的组成,计算了其可能的体系结构数量;其次提出了FCAS体系结构在安全性、重量和效率方面的评价指标,计算了全机各舵面均采用同类作动器时的评价指标值;最后对比分析了现有的各种多目标优化算法,采用遗传算法给出了多电飞机FCAS体系结构的多目标优化设计结果。对比传统的只采用阀控液压伺服作动器的作动系统体系结构,优化后的体系结构可以在满足安全可靠性要求的前提下使系统的重量减轻6%左右,效率提高30%左右。  相似文献   

7.
《中国航空学报》2016,(5):1313-1325
This paper proposes an active fault-tolerant control strategy for an aircraft with dissim-ilar redundant actuation system (DRAS) that has suffered from vertical tail damage. A damage degree coefficient based on the effective vertical tail area is introduced to parameterize the damaged flight dynamic model. The nonlinear relationship between the damage degree coefficient and the corresponding stability derivatives is considered. Furthermore, the performance degradation of new input channel with electro-hydrostatic actuator (EHA) is also taken into account in the dam-aged flight dynamic model. Based on the accurate damaged flight dynamic model, a composite method of linear quadratic regulator (LQR) integrating model reference adaptive control (MRAC) is proposed to reconfigure the fault-tolerant control law. The numerical simulation results validate the effectiveness of the proposed fault-tolerant control strategy with accurate flight dynamic model. The results also indicate that aircraft with DRAS has better fault-tolerant control ability than the traditional ones when the vertical tail suffers from serious damage.  相似文献   

8.
Flight safety issues of an all-electric aircraft include flight control system reliability, protection from electromagnetic interference and lightning, and protection from design errors (primarily in software) and handling qualities when failures occur if the all-electric aircraft does not have traditional aerodynamic stability. Some of these questions already have partial answers, but others remain open. The Federal Aviation Administration expects that discussions with experts in the aviation industry, the military services, the National Aeronautics and Space Administration, and foreign regulatory authorities for civil aircraft will be necessary to resolve these issues.  相似文献   

9.
在未来飞机多/全电化和机电综合管理的发展趋势下,舱门作动器逐渐由机电作动取代了传统的液压、机械作动。针对目前民用飞机舱门分散式独立控制杂、乱、散的局面,提出一种用于电作动舱门的集中式控制方案。对该集中式控制方案下如何实现电机的伺服控制、舱门的并行控制以及接近传感器感应距离值的修改进行设计,并搭建舱门作动系统模拟装置及电...  相似文献   

10.
辅助动力装置系统空中起动设计和验证   总被引:2,自引:1,他引:1       下载免费PDF全文
辅助动力装置(Auxiliary Power Unit,简称APU)系统空中起动设计和验证共涉及APU 本体研制、APU 系统进排气冲压恢复计算分析、APU 系统进排气和APU 本体性能匹配计算分析、APU 系统进气风门设计、进气风门气动载荷计算分析、进气风门作动机构设计、进气风门控制逻辑设计、本体起动控制逻辑设计、冲压恢复测量试飞、适航验证试验试飞等内容,这对飞机主制造商的系统集成能力和适航验证能力提出了很高要求。APU 系统空中起动设计直接影响系统起动性能和起动包线,对某型飞机的辅助动力装置系统空中起动设计和验证进行了介绍,在型号研制经验的基础上,对APU 系统空中起动设计和验证流程和方法进行总结,对后续型号研制具有较强的指导性。  相似文献   

11.
The previous papers have offered the distant vision of an all-electric aircraft?one which fully exploits the intrinsic features of electric power and electronic controls. This paper examines the path to that vision and the barriers along the way?some of which appear relatively easy to overcome while others are more formidable. It is interesting to conjecture what an all-electric aircraft will look like. The all-electric technologies may offer many design options and this paper suggests some tantalizing possibilities. The National Aeronautics and Space Administration (NASA) has sponsored or conducted a number of activities to foster the development of an all-electric airplane. The results of these activities are presented. Finally, in a look to the future, two NASA new initiatives are briefly discussed.  相似文献   

12.
缩比模型遥控飞行验证技术的研究及展望   总被引:1,自引:0,他引:1  
缩比模型遥控飞行验证是飞行试验技术的重要组成部分,本文研究了国内外相关技术发展状况和未来需求,初步分析了需要解决的关键技术,简要介绍了自身团队相关工作进展,并对于该项技术与多学科发展的关系进行了概括。研究表明:缩比模型遥控飞行验证技术是未来飞行器设计研发中的一项重要技术验证途径,在新概念飞机布局设计及飞机新技术应用等方面具有指导作用。  相似文献   

13.
Functional partitioning, redundancy structure, internal communications, and software modularization define the architecture of a digital automatic flight control system (DAFCS). Selection of a suitable system architecture for commercial transports involves such factors as the functional scope, growth provision and flexibility requirements, sensor interfaces, the aircraft's actuator and control surface redundancy, and the dispatch reliability requirements. Trade-offs concerning these various factors are discussed, and it is shown that a very versatile and almost universal DAFCS can be configured to meet the general and peculiar needs associated with each aircraft application. Specific results associated with this system's recent demonstration flights in the DC-10 aircraft, as well as examples from several other transport aircraft applications of the same DAFCS architecture, are used to illustrate the design concepts.  相似文献   

14.
In the aerospace field, electromechanical actuators are increasingly being implemented in place of conventional hydraulic actuators. For safety-critical embedded actuation applications like flight controls, the use of electromechanical actuators introduces specific issues related to thermal balance, reflected inertia, parasitic motion due to compliance and response to failure. Unfortu-nately, the physical effects governing the actuator behaviour are multidisciplinary, coupled and nonlinear. Although numerous multi-domain and system-level simulation packages are now avail-able on the market, these effects are rarely addressed as a whole because of a lack of scientific approaches for model architecting, multi-purpose incremental modelling and judicious model implementation. In this publication, virtual prototyping of electromechanical actuators is addressed using the Bond-Graph formalism. New approaches are proposed to enable incremental modelling, thermal balance analysis, response to free-run or jamming faults, impact of compliance on parasitic motion, and influence of temperature. A special focus is placed on friction and compliance of the mechanical transmission with fault injection and temperature dependence. Aileron actuation is used to highlight the proposals for control design, energy consumption and thermal analysis, power net-work pollution analysis and fault response.  相似文献   

15.
《中国航空学报》2020,33(4):1272-1287
The paper deals with the design and experimental validation of the actuation mechanism control system for a morphing wing model. The experimental morphable wing model manufactured in this project is a full-size scale wing tip for a real aircraft equipped with an aileron. The morphing actuation of the model is based on a mechanism with four similar in house designed and manufactured actuators, positioned inside the wing on two parallel lines. Each of the four actuators used a BrushLess Direct Current (BLDC) electric motor integrated with a mechanical part performing the conversion of the angular displacements into linear displacements. The following have been chosen as successive steps in the design of the actuator control system: (A) Mathematical and software modelling of the actuator; (B) Design of the control system architecture and tuning using Internal Model Control (IMC) methodology; (C) Numerical simulation of the controlled actuator and its testing on bench and wind tunnel. The morphing wing experimental model is tested both at the laboratory level, with no airflow, to evaluate the components integration and the whole system functioning, but also in the wind tunnel, in the presence of airflow, to evaluate its behavior and the aerodynamic gain.  相似文献   

16.
张冰凌  张勇 《飞机设计》2007,27(4):53-60
YF-23A战斗机具有极大的静不安定性,在不开加力的情况下可以实现超声速巡航,其设计目标是在亚声速和超声速均具有优于对手的机动能力,上述要求使得飞行控制作动系统必须具有空前的能力和性能。其独特的飞行和机动包线要求其作动系统在低速时具有高的舵面偏转速率和大的行程,在超声速时要具有附加铰链力矩输出能力,为实现上述目标,开发出具有液压与电能守恒的作动系统。  相似文献   

17.
针对过驱动飞行控制系统中执行器故障时的协调分配问题,提出了一种基于积分滑模的容错飞行控制器设计方法.引入虚拟控制思想,构造了多执行器故障条件下飞行器层级结构控制的数学模型.运用小增益定理,推导了系统闭环稳定的充分条件,并基于线性矩阵不等式,建立了最优状态反馈的凸优化模型.以积分滑模面切换函数为变量,选取李雅普诺夫能量函数,设计了渐近稳定的积分滑模控制器.仿真结果表明,该方法可综合考虑执行器完好和故障时的控制效能,能够实现多操纵面容错飞行控制,具有较好的鲁棒性.  相似文献   

18.
The Power-By-Wire (PEW) program involves the replacement of hydraulic and pneumatic systems currently used in aircraft with an all-electric secondary power system. One of the largest loads of the all-electric secondary power system will be the motor loads which include pumps, compressors and Electrical Actuators (EAs). Issues of improved reliability, reduced maintenance and efficiency, among other advantages, are the motivation for replacing the existing aircraft actuators with electrical actuators. The EA system contains the motor, the power electronic converters, the actuator and the control system, including the sensors. This paper and a companion paper give a comparative literature review in motor drive technologies, with a focus on the trends and tradeoffs involved in the selection of a particular motor drive technology. The reported research comprises the induction motor (IM), the brushless dc motor (BLDCM) and the switched reluctance motor (SRM) drive technologies. Each of the three drives has the potential for application in the PEW program. Many issues remain to be investigated and compared between the three motor drives, using actual mechanical loads expected in the PBW program  相似文献   

19.
A morphing aircraft can adapt its configuration to suit different types of tasks, which is also an important requirement of Unmanned Aerial Vehicles(UAV). The successful development of an unmanned morphing aircraft involves three steps that determine its ability and intelligent: configuration design, dynamic modeling and flight control. This study conducts a comprehensive survey of morphing aircraft. First, the methods to design the configuration of a morphing aircraft are presented and analyzed...  相似文献   

20.
辅助动力装置系统进气风门位置控制子系统用于地面和空中控制辅助动力装置进气风门的打开和关闭,通常由控制器,作动机构(电动作动器和连杆机构)组成。辅助动力装置系统进气风门位置控制子系统的设计是辅助动力装置控制系统设计的一部分,和辅助动力装置进气风门设计、进气风门气动载荷计算分析及辅助动力装置进气道设计同步进行,相互影响。对某型飞机的辅助动力装置系统进气风门位置控制设计方案进行了介绍,该风门位置控制采用单独的风门控制器,降低了辅助动力装置FADEC(Full Authority Digital Electrical Controller,全权限数字电子控制器,简称FADEC)软硬件设计复杂度,简化了接口设计;并且设计了一种新型辅助动力装置系统进气风门作动机构,该作动机构安装/拆卸方便,可达性好;具有力矩放大功能,且该机构可调节,能输出不同大小的力矩。该进气风门位置控制子系统经过型号验证,对后续型号研制具有较强的指导性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号