首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
基于阻力与能量的关系,优化并设计了再入参考弹道。利用模糊控制技术,在线推导了轨道控制器的各项参数。仿真结果表明,基于阻力与能量关系剖面设计的再入轨道满足各项约束,成功地导引飞行器到达TAEM终端,而模糊PD控制器则能排除干扰,实时跟踪参考弹道。  相似文献   

2.
This paper presents an autonomous landing navigation and guidance scheme for future asteroid sample return mission. An autonomous navigation scheme based on feature tracking technology is brought out firstly; secondly, desired descent landing trajectories with the initial and terminal constraints are planned in order to achieve arrive-at-time landing on an asteroid; then, two guidance control laws, based on error phase analysis method and PD plus PWPF method respectively, are designed to track reference descent trajectory; finally, the validity of the proposed scheme is confirmed by computer simulation.  相似文献   

3.
标准轨迹制导中准平衡滑翔条件优化研究   总被引:1,自引:0,他引:1       下载免费PDF全文
对于可重复使用运载器标准轨迹再入制导,准平衡滑翔条件可以将高度-速度平面内各项再入约束形成的飞行走廊,转换为倾侧角-速度空间内的倾侧角走廊.通过在倾侧角走廊内设计倾侧角曲线,可以生成满足飞行走廊的标准轨迹.通过论证标准轨迹再入制导过程中的准平衡滑翔条件及其物理意义,说明了由倾侧角走廊内的倾侧角曲线生成的标准轨迹,存在突破再入飞行走廊边界的可能性.通过对倾侧角走廊边界设置余度,极大地降低了标准轨迹突破再入飞行走廊边界的可能性,提高了标准轨迹的设计成功率.  相似文献   

4.
This paper proposes a finite-time robust flight controller, targeting for a reentry vehicle with blended aerodynamic surfaces and a reaction control system(RCS). Firstly, a novel finite-time attitude controller is pointed out with the introduction of a nonsingular finite-time sliding mode manifold. The attitude tracking errors are mathematically proved to converge to zero within finite time which can be estimated. In order to improve the performance, a second-order finite-time sliding mode controller is further developed to effectively alleviate chattering without any deterioration of robustness and accuracy. Moreover, an optimization control allocation algorithm, using linear programming and a pulse-width pulse-frequency(PWPF) modulator, is designed to allocate torque commands for all the aerodynamic surface deflections and on–off switching-states of RCS thrusters.Simulations are provided for the reentry vehicle considering uncertain parameters and external disturbances for practical purposes, and the results demonstrate the effectiveness and robustness of the attitude control system.  相似文献   

5.
An adaptive robust attitude tracking control law based on switched nonlinear systems is presented for a variable structure near space vehicle (VSNSV) in the presence of uncertainties and disturbances. The adaptive fuzzy systems are employed for approximating unknown functions in the flight dynamic model and their parameters are updated online. To improve the flight robust performance, robust controllers with adaptive gains are designed to compensate for the approximation errors and thus they have less design conservation. Moreover, a systematic procedure is developed for the synthesis of adaptive fuzzy dynamic surface control (DSC) approach. According to the common Lyapunov function theory, it is proved that all signals of the closed-loop system are uniformly ultimately bounded by the continuous controller. The simulation results demonstrate the effectiveness and robustness of the proposed control scheme.  相似文献   

6.
翼伞系统在未知风场中执行归航任务时,需获得风场的大小和方向信息,以便在归航过程中利用或者消除风场的影响。为实现翼伞系统在未知风场中精确归航与逆风雀降着陆,首先提出一种利用全球定位系统(GPS)定位数据和最小二乘法在线辨识风向和风速的方法,然后将风场中平均风的影响在轨迹规划中予以考虑,设计分段归航路径;将突风作为外界干扰,在轨迹跟踪过程中由线性自抗扰控制(LADRC)器进行观测和补偿。最后通过仿真实验验证了本文所提出的归航控制方法对于提高翼伞系统在未知风场中的归航精度和抗风能力有重要意义。  相似文献   

7.
A method is presented for reducing trajectory sensitivity and achieving robust asymptotic tracking for linear feedback systems when there are parameter perturbations and disturbance inputs. The controller consists of a servocompensator containing the modes of the reference signals and disturbance inputs, a stabilizing feedback loop, and a feedforward compensator. Application of the method to the design of a vertical takeoff and landing (VTOL) aircraft flight control system is discussed. The use of a precompensator allows performance maneuvers such that the aircraft tracks desired trajectories and the feedforward and feedback signals aid in reducing the trajectory sensitivity to variations of parameters due to change in airspeed and to wind gust. Simulation results are presented to show the robust tracking, disturbance rejection, and sensitivity reduction capabilities of the flight control system.  相似文献   

8.
The paper focuses on the design of a new automatic landing system(ALS) in longitudinal plane; the new ALS controls the aircraft trajectory and longitudinal velocity. Aircraft control is achieved by means of a proportional-integral(PI) controller and the instrumental landing system– the first phase of landing(the glide slope) and a proportional-integral-derivative(PID) controller together with a radio-altimeter – the second phase of landing(the flare); both controllers modify the reference model associated with aircraft pitch angle. The control of the pitch angle and longitudinal velocity is performed by a neural network adaptive control system, based on the dynamic inversion concept, having the following as components: a linear dynamic compensator, a linear observer, reference models, and a Pseudo control hedging(PCH) block. The theoretical results are software implemented and validated by complex numerical simulations; compared with other ALSs having the same radio-technical subsystems but with conventional or fuzzy controllers for the control of aircraft pitch angle and longitudinal velocity, the architecture designed in this paper is characterized by much smaller overshoots and stationary errors.  相似文献   

9.
Sliding mode control based guidance law with impact angle constraint   总被引:3,自引:2,他引:1  
The terminal guidance problem for an unpowered lifting reentry vehicle against a sta- tionary target is considered. In addition to attacking the target with high accuracy, the vehicle is also expected to achieve a desired impact angle. In this paper, a sliding mode control (SMC)-based guidance law is developed to satisfy the terminal angle constraint. Firstly, a specific sliding mode function is designed, and the terminal requirements can be achieved by enforcing both the sliding mode function and its derivative to zero at the end of the flight. Then, a backstepping approach is used to ensure the finite-time reaching phase of the sliding mode and the analytic expression of the control effort can be obtained. The trajectories generated by this method only depend on the initial and terminal conditions of the terminal phase and the instantaneous states of the vehicle. In order to test the performance of the proposed guidance law in practical application, numerical simulations are carried out by taking all the aerodynamic parameters into consideration. The effec- tiveness of the proposed guidance law is verified by the simulation results in various scenarios.  相似文献   

10.
韦常柱  琚啸哲  徐大富  吴荣  崔乃刚 《航空学报》2019,40(7):322782-322782
针对垂直起降可重复使用运载器返回全程非线性、高动态、强扰动、多约束条件下的精确着陆问题,开展适应各飞行段任务特性和需求的返回全程制导控制方法研究。首先分析返回全剖面各飞行段的特点及对制导控制的需求,建立了动力学模型;然后基于经典制导控制方法给出可行的返回全程制导控制方案,并针对其不足分别设计修航段基于剩余时间估计和几何关系目标点自适应更新的双层迭代制导、返回末段多约束自适应制导和返回全程自抗扰控制器,构建了自适应强抗扰新型返回全程制导控制方案;最后进行了数学仿真,通过对比分析经典制导控制方案和新型制导控制方案在小偏差/扰动和大偏差/扰动两种条件下的飞行状态,验证了新型制导控制方案下更高的着陆精度、更强的适应性和抗扰性。  相似文献   

11.
RFNN control for PMLSM drive via backstepping technique   总被引:2,自引:0,他引:2  
A robust fuzzy neural network (RFNN) control system is proposed in this study to control the position of the mover of a permanent magnet linear synchronous motor (PMLSM) drive system to track periodic reference trajectories. First, an ideal feedback linearization control law is designed based on the backstepping technique. Then, a fuzzy neural network (FNN) controller is designed to be the main tracking controller of the proposed RFNN control system to mimic an ideal feedback linearization control law, and a robust controller is proposed to confront the shortcoming of the FNN controller. Moreover, to relax the requirement for the bound of uncertainty term, which comprises a minimum approximation error, optimal parameter vectors and higher order terms in Taylor series, an adaptive bound estimation is investigated where a simple adaptive algorithm is utilized to estimate the bound of uncertainty. Furthermore, the simulated and experimental results due to periodic reference trajectories demonstrate that the dynamic behaviors of the proposed control systems are robust with regard to uncertainties.  相似文献   

12.
高速开关阀在起落架半主动控制中的应用研究(英文)   总被引:3,自引:0,他引:3  
To select or develop an appropriate actuator is one of the key and difficult issues in the study of semi-active controlled landing gear. Performance of the actuator may directly affect the effectiveness of semi-active control. In this article, parallel high-speed solenoid valves are chosen to be the actuators for the semi-active controlled landing gear and being studied. A nonlinear high-speed solenoid valve model is developed with the consideration of magnetic saturation characteristics and verified by test. According to the design rule of keeping the peak load as small as possible while absorbing the specified shock energy, a fuzzy PD control rule is designed. By the rule controller parameters can be self-regulated. The simulation results indicate that the semi-active control based on high-speed solenoid valve can effectively improve the control performance and reduce impact load during landing.  相似文献   

13.
This paper presents a novel Fault Tolerant Control(FTC) scheme based on accelerated Landweber iteration and redistribution mechanism for a horizontal takeoff horizontal landing reusable launch vehicle(RLV). First, an adaptive law based on fixed-time non-singular fast terminal sliding mode control(NFTSMC), which focuses on the attitude tracking controller design for RLV in the presence of model couplings, parameter uncertainties and external disturbances, is proposed to produce virtual control co...  相似文献   

14.
Sliding mode tracking control for miniature unmanned helicopters   总被引:3,自引:2,他引:1  
A sliding mode control design for a miniature unmanned helicopter is presented. The control objective is to let the helicopter track some predefined velocity and yaw trajectories. A new sliding mode control design method is developed based on a linearized dynamic model. In order to facilitate the control design, the helicopter’s dynamic model is divided into two subsystems,such as the longitudinal-lateral and the heading-heave subsystem. The proposed controller employs sliding mode control technique to compensate for the immeasurable flapping angles’ dynamic effects and external disturbances. The global asymptotic stability(GAS) of the closed-loop system is proved by the Lyapunov based stability analysis. Numerical simulations demonstrate that the proposed controller can achieve superior tracking performance compared with the proportionalintegral-derivative(PID) and linear-quadratic regulator(LQR) cascaded controller in the presence of wind gust disturbances.  相似文献   

15.
《中国航空学报》2023,36(2):256-269
This paper investigates the homing control problem of a flexible aerial delivery system with external wind, at-mospheric turbulence, and aerodynamic uncertainties. An accurate homing control strategy is presented, consisting of a trajectory generation algorithm and a lateral tracking controller. A high-altitude trajectory generation is de-veloped with system characteristics explicitly considered to generate the desired trajectory for the aerial delivery control system design. It significantly compensates for the altitude deviation of the existing multiphase theory based trajectory generation methodologies. A novel adaptive vector field control law is then designed to accom-plish the lateral tracking maneuvers. The key feature of the proposed method is that the complete lateral closed-loop control, including position and heading angle loops, is achieved in the presence of disturbances and dynamic uncertainties. The homing control with high landing accuracy is therefore achieved. Simulation and hardware-in-loop testing results are finally presented to validate the proposed method’s effectiveness compared to a conventional homing control scheme.  相似文献   

16.
针对新型飞机除冰车加热系统的大惯性、纯滞后、非线性和模型不确定性等特点,提出了一种新的模糊复合控制方法。该方法将基于模糊规则切换的Fuzzy—PID双模控制与参数自整定模糊控制相结合,一方面利用基于模糊规则切换的Fuzzy—PID双模控制器增强系统的鲁棒性和抗干扰性,另一方面利用参数自整定模糊控制器加快系统的响应速度。理论分析和仿真结果表明,所设计的模糊复合控制方法能很好地适应飞机除冰车加热系统数学模型的大幅度变化,具有很大的实用价值。  相似文献   

17.
基于反作用发动机推力的空天飞行器再入姿态飞行控制   总被引:1,自引:0,他引:1  
研究了空天飞行器(ASV)再入跨大气层飞行时的姿态控制问题。在ASV跨大气层再入飞行时,通过反作用控制系统(RCS)中的反作用发动机推力产生控制力矩来控制ASV的姿态,以补偿气动舵面操纵失效或者部分失效而引起的控制力矩不足;随着空气密度的增加,气动舵面逐步介入控制系统,RCS随之逐步退出.由于快回路控制器产生进行姿态控制所需要的控制力矩,其通过相应的控制分配将控制力矩映射到作动器,为了减轻作动器的抖振,提出了利用基于区域模型的T-S模糊多模型控制方法设计快回路控制器,在跟踪期望角速度的同时,柔化控制信号.最后通过仿真验证了所提方法的有效性.   相似文献   

18.
提出了一种基于串级线性自抗扰控制器的四旋翼无人机控制方法。根据建立的紊流模型形成了干扰风,在干扰风的环境下建立了四旋翼的运动学模型,并设计了一个串级的线性自抗扰控制器,其中外环采用位置控制,内环采用姿态控制。对比了该控制器与非线性自抗扰控制器和经典PID控制器在无风干扰和有风干扰下无人机的定点悬停的性能。仿真试验结果表明,无论是在无风干扰下还是在有风干扰下,该控制器的性能均好于非线性自抗扰控制器和PID控制器,具有较好的鲁棒性,能够运用到各种类型的旋翼无人机的工程控制中。  相似文献   

19.
基于非线性动态逆的无人机自动着陆控制系统   总被引:1,自引:0,他引:1  
采用非线性动态逆(NDI)控制方法来解决无人机(UAV)自动着陆阶段的非线性控制问题。建立了无人机非线性数学模型,应用奇异摄动理论对飞机动态进行时标划分,研究快、慢状态子系统的控制器及机动产生器的设计,在无风情况下以及受到给定值风扰动情况下完成了系统自动着陆仿真验证。系统仿真结果表明该控制系统能够满足系统控制精度要求。  相似文献   

20.
鹿存侃  胡永太 《航空学报》2016,37(Z1):106-111
针对空天飞行器再入段异构执行机构复合控制问题,基于气动舵面和反作用推力器的特性,提出了适用于空天飞行器的3种气动舵面与反作用控制系统的复合控制构型:指令型、力矩型、指令误差型,以及相应的控制律设计方法,在此基础上完成空天飞行器再入段的控制系统设计。仿真结果表明,3种构型的复合控制系统均能满足指令跟踪性能要求,其中指令型复合控制系统气动舵工作最为平稳,推力器开启频次最少。从工程应用的角度出发,指令型复合控制系统的综合性能最为理想。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号