首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Finite-time sliding mode attitude control for a reentry vehicle with blended aerodynamic surfaces and a reaction control system
Authors:Geng Jie  Sheng Yongzhi  Liu Xiangdong
Abstract:This paper proposes a finite-time robust flight controller, targeting for a reentry vehicle with blended aerodynamic surfaces and a reaction control system (RCS). Firstly, a novel finite-time attitude controller is pointed out with the introduction of a nonsingular finite-time sliding mode manifold. The attitude tracking errors are mathematically proved to converge to zero within finite time which can be estimated. In order to improve the performance, a second-order finite-time sliding mode controller is further developed to effectively alleviate chattering without any deterioration of robustness and accuracy. Moreover, an optimization control allocation algorithm, using linear programming and a pulse-width pulse-frequency (PWPF) modulator, is designed to allocate torque commands for all the aerodynamic surface deflections and on–off switching-states of RCS thrusters. Simulations are provided for the reentry vehicle considering uncertain parameters and external disturbances for practical purposes, and the results demonstrate the effectiveness and robustness of the attitude control system.
Keywords:Chattering alleviation  Control allocation  Finite-time convergence  Flight control systems  Second-order sliding mode  Singularity elimination  Sliding mode control
本文献已被 CNKI 维普 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号