首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
复合材料在生产和制造过程中难免会存在缺陷和损伤,严重影响着航空安全。敲击检测是最简单、运用最广泛的无损检测方法,然而其向智能化方向发展过程中出现了诸多问题。对复合材料结构特性、缺陷和损伤、安全性、敲击检测原理、敲击锤设计、信号处理单元、数据库搭建和智能检测算法进行了深入研究,提出了敲击检测标准流程和规范、数据库搭建方法、以及智能聚类检测算法,在此基础上开发了智能敲击检测系统。  相似文献   

2.
随着航空复合材料运用越来越广泛,其本身缺陷造成的事故也愈来愈多.提出一种利用敲击检测和BP神经网络的航空复合材料无损检测方法.首先运用敲击检测采集数据;然后运用平均值法和方差法来对数据进行修正;最后借助MATLAB软件进行BP神经网络数据分析,在训练数据4 000组、测试数据20组时,准确率可达90%.实例验证结果表明,基于BP神经网络的敲击检测方法可以实现航空复合材料缺陷的有效检测.  相似文献   

3.
分析了航空复合材料结构件缺陷和损伤特点,介绍了可应用于航空复合材料结构缺陷的无损检测技术,展望了无损检测技术的未来发展.  相似文献   

4.
复合材料夹芯结构的数字化敲击检测技术研究   总被引:2,自引:0,他引:2  
从复合材料夹芯结构的无损检测需求出发,简述了基于敲击力时间判据的数字化敲击检测技术原理,介绍了便携式数字化敲击检测成像系统的设计过程,针对不同结构类型和不同损伤尺寸的夹芯结构试件开展了敲击检测试验验证,并对检测结果进行了讨论和分析。试验证明数字化敲击检测技术能够有效检测蜂窝夹芯结构和泡沫夹芯结构中的分层和脱粘缺陷。  相似文献   

5.
粘接类复合材料在航天领域得到应用广泛,但是粘接质量的判断一直是航天复合材料发展的一个重要课题。敲击检测在应用于复合材料粘接质量的检测时,受复合材料自身特性的影响较小,因此受到越来越多的关注;但是,敲击检测方法的数据处理问题一直没有得到解决,因此这也制约了其进一步发展。本文以敲击检测的数据处理为出发点,提出了聚类分析技术用以解决这一难题。经过选取数据样本进行验证,发现基于自组织竞争神经网络的聚类分析技术,可以很好地解决敲击检测的数据处理问题。  相似文献   

6.
复合材料因具有减轻结构质量、可降低油耗和提高飞行性能等优点,已广泛应用于航空航天领域。飞机在生产和服役过程中不可避免地会出现缺陷和损伤,因此对复合材料修理的探究变得尤为重要。本文介绍了复合材料无损检测方法、常见损伤缺陷及复合材料修理方法,分析了复合材料修理技术与理论的研究现状和存在问题,展望了复合材料修理技术的发展趋势。  相似文献   

7.
复合材料已经广泛应用于航空领域,成为飞机结构的主要用材之一.复合材料的损伤破坏机理与金属截然不同,在飞机大量采用复合材料结构后,其维护问题变得更加突出.本文对复合材料的主要损伤类型进行了介绍,对各种无损检测方法进行了总结,并举例说明飞机复合材料结构损伤的定义与描述方法.在此基础上,介绍了飞机复合材料结构的修理流程与主要修理方法,并对相关的试验与理论研究成果进行了综述.  相似文献   

8.
复合材料具有设计性强、重量轻、硬度高、耐腐蚀、抗疲劳性能好、热膨胀系数小等一系列优越性能,广泛应用于航空航天、国防、建筑等领域.但复合材料制件在生产和使用过程中可能产生缺陷,引起质量问题,因此对其进行无损检测非常必要.目前射线检测仍是复合材料无损检测常用的检测方法之一.X射线实时成像检测技术作为一种新兴的无损检测方法,具有快速、准确、直观、成本低等优点,已进人工业产品无损检测领域.  相似文献   

9.
伴随复合材料的迅速发展,其在航空航天方面的应用也日益普遍,但因复合材料的各向异性,在制造过程中会导致某些缺陷的产生。敲击检测作为一种实时原位的无损检测,在复合材料的检测中效果明显。由于敲击检测尚未找到合理的数据处理方法,所以其应用范围受到限制。从解决敲击检测数据处理方法的角度出发,提出将改进层次聚类法应用于敲击检测中,并在应用实例环节对该方法进行了应用,通过实验结果对比,表明改进层次聚类方法可以解决敲击检测数据处理的问题。  相似文献   

10.
先进复合材料的无损检测   总被引:16,自引:1,他引:15       下载免费PDF全文
综合分析了碳纤维复合材料构件在成型和使用过程中造成的缺陷及损伤产生的原因,指出成型工艺原理和理论的非完美性、原材料因素、人为因素是复合材料成型过程中缺陷产生的主要原因。采用无损探伤技术对缺陷进行检测是复合材料构件质量保证的必要手段。对目前国内外用于复合材料构件的几种无损探伤方法进行了比较,认为超声法是复合材料常见缺陷检测的一种有效手段。并对超声检测技术的研究和应用进展进行了介绍。  相似文献   

11.
航空复合材料先进超声无损检测技术   总被引:1,自引:0,他引:1  
复合材料具有高强度、高硬度、密度小等优点,广泛应用于航空航天领域.由于其独特的制造工艺,在制造过程中不可避免地会形成缺陷.开裂、脱粘、孔隙(率)及多余物(夹杂)等缺陷是复合材料构件验收和质量监测时需要重点检测的缺陷类型[1-2]. 超声检测方法作为一种方便、有效的检测手段,被广泛应用于复合材料构件的无损检测.  相似文献   

12.
三种时频分析在复合材料无损检测中的应用   总被引:1,自引:0,他引:1  
随着复合材料的广泛应用和现代信号处理技术的发展,时频分析方法已广泛应用于各类复合材料的损伤检测。将短时傅立叶变换、小波变换和黄氏变换三种时频分析技术经过Matlab编程,结合Lamb波应用于玻璃纤维增强的复合材料层合板的无损检测,并对三种时频结果进行比较与分析。结果表明:上述三种时频分析方法都能进行复合材料的损伤判定,但黄氏变换方法的分析精度更高。  相似文献   

13.
随着复合材料构件被广泛地应用于航空、航天和船舶等各个领域,这些复合材料构件的安全对产品质量起到关键的作用,具有重要的经济价值。无论是制造过程还是维修过程,都需要对复合材料构件进行快速的缺陷检测。剪切成像技术是一种高效的、全方位缺陷检测技术,并被广泛地认为是针对现代复合材料构件的可靠的检测技术。本文将介绍剪切成像技术最新的发展动态和软件技术,并概述其应用潜力。  相似文献   

14.
冯康军  李艳军 《飞机设计》2010,30(5):20-22,67
介绍了一种民用飞机复合材料智能敲击检测系统的设计原理。在MATLAB环境下对敲击信号进行小波分解和去噪,通过对比选取不同的小波函数和阈值时得到的去噪结果,选取最优的小波函数和阈值进行分解和去噪,获得了较好的信号波形,验证了智能敲击检测系统对分层和裂纹两类复合材料主要损伤的辨识能力,同时提高了智能敲击检测系统的精度。  相似文献   

15.
GE在CMC部件生产中使用的缺陷检测方法   总被引:2,自引:0,他引:2  
应用于飞机发动机内部高温高压区域的陶瓷基复合材料(CMC),是当前最新的复合材料之一,在LEAP发动机和GE9X等新型发动机中有着广泛的应用。当前, LEAP发动机即将开始批量生产和交付,因此GE航空集团在为大规模生产陶瓷基复合材料做最后的准备。例如,在陶瓷基复合材料精益实验室中,GE航空采用微计算机断层扫描技术(Micro-CT)对新设计的陶瓷基复合材料部件进行无损探伤及检测,旨在以更高的分辨率深入检查陶瓷基复合材料部件的内部结构。  相似文献   

16.
通过对全碳纤维复合材料飞机零件的验收实践、被检出缺陷零件的试验、国内外相关标准的比较,分析了单个缺陷的损伤容限;同一零件不同部位损伤容限区别;多个缺陷的计算方法;多个缺陷区域间距离极限的计算公式;目视检测和采用多种无损检测方法检测的必要性;完善了适合本公司全碳纤维复合材料飞机零件的无损检测验收的标准。  相似文献   

17.
航空复合材料应用的增长对其无损检测技术提出了更高的要求。在不断引入创新技术,加速复合材料无损检测自动化、智能化发展的同时,新型无损检测的标准化也提上日程。  相似文献   

18.
针对CFRP复合材料层板缺陷无损检测与评价的红外热波成像检测方法、热波信号处理、缺陷判定和识别及红外热波成像检测POD分析等进行了系统介绍,分析了各种红外热波成像检测方法的应用与优势、适用性及局限性等,重点介绍了红外热波成像方法应用于CFRP复合材料层板缺陷检测的应用实例,并进一步阐述了复合材料缺陷红外热波成像无损检测的发展.  相似文献   

19.
双基推进剂橡胶包覆层界面脱粘降低了推进剂工作性能,使其运行存在潜在的安全隐患。针对此问题,设计并开发了一套由信号处理组件、自动化控制组件和智能诊断组件构成的敲击检测系统,旨在通过自动化控制与智能敲击诊断技术相结合,更加全面的获取待测件的状态,提高检测的准确性和可靠性。实验结果表明,敲击检测系统可以识别橡胶包覆层脱粘缺陷,并且当敲击检测分辨率为3~10 mm时,脱粘缺陷检测准确率≥87.5%;BP神经网络隐含层神经元数设置6或7时,故障识别效果良好,K-means聚类算法对敲击检测数据故障确诊率≥90%。综上所述,敲击检测系统具有较高的检测分辨率和准确率,可以实现对双基推进剂包覆层粘接质量的客观评价。  相似文献   

20.
浅谈航空复合材料无损检测技术及其进展   总被引:1,自引:0,他引:1  
为保证航空复合材料构件能够满足使用要求,无损检测应该贯穿于构件设计、试验以及生产的全过程。当构件变更设计参数或者经历损伤试验后,应该再次检测和控制构件的内部质量,确保构件的安全使用。针对复合材料构件的维护,传统观念往往是发现问题后进行修补或者替换,但是航空复合材料构件的使用环境具有特殊性,这就要求必须对其进行定期测试,对可能发生的缺陷、故障进行预测,从而在合适的时间采取措施,进行修补或者替换。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号