首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This research concerns a novel attitude stabilization structure for a ducted-fan aerial robot to work against modeling error and strong external transient disturbance, and it focuses on two main control targets: modeling error compensation, and the improvement of disturbance resistance along the rolling channel. For the first research objective, we proposed an adaptive nominal controller with the reconfigurable control law design based on the estimation of the modeling error found in the closed-...  相似文献   

2.
This paper deals with the problem of intercepting maneuvering targets with terminal angle constraints for missiles subjected to three-dimensional non-decoupling engagement geometry.To achieve the finite-time interception and satisfactory overload characteristics, a time varying sliding mode control methodology is developed based on a time base generator function. The main feature of the proposed guidance law guarantees the Line-of-Sight(LOS) angles to converge to small neighborhoods of the desir...  相似文献   

3.
This paper presents an integrated missile guidance and control law based on adaptive fuzzy sliding mode control. The integrated model is formulated as a block-strict-feedback nonlinear system, in which modeling errors, unmodeled nonlinearities, target maneuvers, etc. are viewed as unknown uncertainties. The adaptive nonlinear control law is designed based on backstepping and sliding mode control techniques. An adaptive fuzzy system is adopted to approximate the coupling nonlinear functions of the system, and for the uncertainties, we utilize an online-adaptive control law to estimate the unknown parameters. The stability analysis of the closed-loop system is also conducted. Simulation results show that, with the application of the adaptive fuzzy sliding mode control, small miss distances and smooth missile trajectories are achieved, and the system is robust against system uncertainties and external disturbances.  相似文献   

4.
Experimental study of an aircraft fuel tank inerting system   总被引:3,自引:2,他引:1  
In this work, a simulated aircraft fuel tank inerting system has been successfully established based on a model tank. Experiments were conducted to investigate the influences of different operating parameters on the inerting effectiveness of the system, including flow rate of the inert gas(nitrogen-enriched air), inert gas concentration, fuel load of the tank and different inerting approaches. The experimental results show that under the same operating conditions, the time span of a complete inerting process decreased as the flow rate of inert gas was increased; the time span using the inert gas with 5% oxygen concentration was much longer than that using pure nitrogen;when the fuel tank was inerted using the ullage washing approach, the time span increased as the fuel load was decreased; the ullage washing approach showed the best inerting performance when the time span of a complete inerting process was the evaluation criterion, but when the decrease of dissolved oxygen concentration in the fuel was also considered to characterize the inerting effectiveness, the approach of ullage washing and fuel scrubbing at the same time was the most effective.  相似文献   

5.
In this paper, sensitivity approaches are taken to analyze and design an integrated flight propulsion control system where the interaction between subsystems direitly affects the stability property and handling performances of the aircraft. The eigenvalue sen sitivity approach is employed to study the effect of coupling parameters on system stability and gain sensitivity approach is used to direct the reduced states feedback suboptimal control system design. Simulation results show that the integrated flight propulsion control system designed by sensitivity approaches is of good performance.  相似文献   

6.
The attitude synchronization problem for multiple spacecraft with input constraints is investigated in this paper. Two distributed control laws are presented and analyzed. First, by intro- ducing bounded function, a distributed asymptotically stable control law is proposed. Such a con- trol scheme can guarantee attitude synchronization and the control inputs of each spacecraft can be a priori bounded regardless of the number of its neighbors. Then, based on graph theory, homoge- neous method, and Lyapunov stability theory, a distributed finite-time control law is designed. Rig- orous proof shows that attitude synchronization of multiple spacecraft can be achieved in finite time, and the control scheme satisfies input saturation requirement. Finally, numerical simulations are presented to demonstrate the effectiveness and feasibility of the oroDosed schemes.  相似文献   

7.
Adaptive sliding mode control of the A-axis used for blisk manufacturing   总被引:1,自引:0,他引:1  
As a key assembly in the 5-axis CNC machine tools, positioning precision of the A-axis directly affects the machining accuracy and surface quality of the parts. First of all, mechanical structure and control system of the A-axis are designed. Then, considering the influence of nonlin- ear friction, backlash, unmodeled dynamics, uncertain cutting force and other external disturbance on the control precision of the A-axis, an adaptive sliding mode control (ASMC) based on extended state observer (ESO) is proposed. ESO is employed to estimate the state variables of the unknown system and an adaptive law is adopted to compensate for the input dead-zone caused by friction, backlash and other nonlinear characteristics. Finally, stability of the closed-loop system is guaran- teed by the Lyapunov theory. Positioning experiments illustrate the perfect estimation of ESO and the stronger anti-interference and robustness of ASMC, which can improve the control precision of the A-axis by about 40 times. Processing experiments show that the ASMC can reduce the waviness, averaKe error and roughness of the nrocessed surface by 35.63%, 31.31% and 30.35%, respectively.  相似文献   

8.
A new set of relative orbit elements(ROEs)is used to derive a new elliptical formation flying model.In-plane and out-of-plane motions can be completely decoupled,which benefts elliptical formation design.The inverse transformation of the state transition matrix is derived to study the relative orbit control strategy.Impulsive feedback control laws are developed for both in-plane and out-of-plane relative motions.Control of in-plane and out-of-plane relative motions can be completely decoupled using the ROE-based feedback control law.A tangential impulsive control method is proposed to study the relationship of fuel consumption and maneuvering positions.An optimal analytical along-track impulsive control strategy is then derived.Different typical orbit maneuvers,including formation establishment,reconfguration,long-distance maneuvers,and formation keeping,are taken as examples to demonstrate the performance of the proposed control laws.The effects of relative measurement errors are also considered to validate the high accuracy of the proposed control method.  相似文献   

9.
《中国航空学报》2016,(1):202-214
For the terminal guidance problem of missiles intercepting maneuvering targets in the three-dimensional space, the design of guidance laws for non-decoupling three-dimensional engage-ment geometry is studied. Firstly, by introducing a finite time integral sliding mode manifold, a novel guidance law based on the integral sliding mode control is presented with the target acceler-ation as a known bounded external disturbance. Then, an improved adaptive guidance law based on the integral sliding mode control without the information of the upper bound on the target accel-eration is developed, where the upper bound of the target acceleration is estimated online by a designed adaptive law. The both presented guidance laws can make sure that the elevation angular rate of the line-of-sight and the azimuth angular rate of the line-of-sight converge to zero in finite time. In the end, the results of the guidance performance for the proposed guidance laws are pre-sented by numerical simulations. Although the designed guidance laws are developed for the con-stant speed missiles, the simulation results for the time-varying speed missiles are also shown to further confirm the designed guidance laws.  相似文献   

10.
In this paper, the attitude stabilization problem of a rigid spacecraft described by Rodrigues parameters is investigated via a composite control strategy, which combines a feedback control law designed by a finite time control technique with a feedforward compensator based on a linear disturbance observer (DOB) method. By choosing a suitable coordinate transformation, the spacecraft dynamics can be divided into three second-order subsystems. Each subsystem includes a certain part and an uncertain part. By using the finite time control technique, a continuous finite time controller is designed for the certain part. The uncertain part is considered to be a lumped disturbance, which is estimated by a DOB, and a corresponding feedforward design is then implemented to compensate the disturbance. Simulation results are employed to confirm the effectiveness of the proposed approach.  相似文献   

11.
A New Hybrid Control Scheme for an Integrated Helicopter and Engine System   总被引:1,自引:1,他引:0  
A new hybrid control scheme is presented with a robust multiple model fusion control(RMMFC) law for a UH-60 helicopter and an active disturbance rejection control(ADRC) controller for its engines.This scheme is a control design method with every subsystem designed separately but fully considering the couplings between them.With three subspaces with respect to forward flight velocity,a RMMFC is proposed to devise a four-loop reference signal tracing control for the helicopter,which escapes the closed-loop system from unstable state due to the extreme complexity of this integrated nonlinear system.The engines are controlled by the proposed ADRC decoupling controller,which fully takes advantage of a good compensation ability for unmodeled dynamics and extra disturbances,so as to compensate torque disturbance in power turbine speed loop.By simulating a forward acceleration flight task,the RMMFC for the helicopter is validated.It is apparent that the integrated helicopter and engine system(IHES) has much better dynamic performance under the new control scheme.Especially in the switching process,the large transient is significantly weakened,and smooth transition among candidate controllers is achieved.Over the entire simulation task,the droop of power turbine speed with the proposed ADRC controller is significantly slighter than with the conventional PID controller,and the response time of the former is much faster than the latter.By simulating a rapid climb and descent flight task,the results also show the feasibility for the application of the proposed multiple model fusion control.Although there is aggressive power demand in this maneuver,the droop of power turbine speed with an ADRC controller is smaller than using a PID controller.The control performance for helicopter and engine is enhanced by adopting this hybrid control scheme,and simulation results in other envelope state give proofs of robustness for this new scheme.  相似文献   

12.
Dynamic modeling of a hose-drogue aerial refueling system(HDARS) and an integral sliding mode backstepping controller design for the hose whipping phenomenon(HWP) during probe-drogue coupling are studied. Firstly, a dynamic model of the variable-length hose-drogue assembly is built for the sake of exploiting suppression methods for the whipping phenomenon.Based on the lumped parameter method, the hose is modeled by a series of variable-length links connected with frictionless joints. A set of iterative equations of the hose's three-dimensional motion is derived subject to hose reeling in/out, tanker motion, gravity, and aerodynamic loads accounting for the effects of steady wind, atmospheric turbulence, and tanker wake. Secondly,relying on a permanent magnet synchronous motor and high-precision position sensors, a new active control strategy for the HWP on the basis of the relative position between the tanker and the receiver is proposed. Considering the strict-feedback configuration of the permanent magnet synchronous motor, a rotor position control law based on the backstepping method is designed to insure global stability. An integral of the rotor position error and an exponential sliding mode reaching law of the current errors are applied to enhance control accuracy and robustness. Finally,the simulation results show the effectiveness of the proposed model and control laws.  相似文献   

13.
An adaptive robust attitude tracking control law based on switched nonlinear systems is presented for a variable structure near space vehicle (VSNSV) in the presence of uncertainties and disturbances. The adaptive fuzzy systems are employed for approximating unknown functions in the flight dynamic model and their parameters are updated online. To improve the flight robust performance, robust controllers with adaptive gains are designed to compensate for the approximation errors and thus they have less design conservation. Moreover, a systematic procedure is developed for the synthesis of adaptive fuzzy dynamic surface control (DSC) approach. According to the common Lyapunov function theory, it is proved that all signals of the closed-loop system are uniformly ultimately bounded by the continuous controller. The simulation results demonstrate the effectiveness and robustness of the proposed control scheme.  相似文献   

14.
《中国航空学报》2016,(3):688-703
An adaptive sliding mode control(ASMC) law is proposed in decentralized scheme for trajectory tracking control of a new concept space robot.Each joint of the system is a free ball joint capable of rotating with three degrees of freedom(DOF).A cluster of control moment gyroscopes(CMGs) is mounted on each link and the base to actuate the system.The modified Rodrigues parameters(MRPs) are employed to describe the angular displacements,and the equations of motion are derived using Kane's equations.The controller for each link or the base is designed separately in decentralized scheme.The unknown disturbances,inertia parameter uncertainties and nonlinear uncertainties are classified as a ‘‘lumped" matched uncertainty with unknown upper bound,and a continuous sliding mode control(SMC) law is proposed,in which the control gain is tuned by the improved adaptation laws for the upper bound on norm of the uncertainty.A general amplification function is designed and incorporated in the adaptation laws to reduce the control error without conspicuously increasing the magnitude of the control input.Uniformly ultimate boundedness of the closed loop system is proved by Lyapunov's method.Simulation results based on a three-link system verify the effectiveness of the proposed controller.  相似文献   

15.
As a main difficult problem encountered in electrochemical machining (ECM), the cathode design is tackled, at present, with various numerical analysis methods such as finite difference, finite element and boundary element methods. Among them, the finite element method presents more flexibility to deal with the irregularly shaped workpieces. However, it is very difficult to ensure the convergence of finite element numerical approach. This paper proposes an accurate model and a finite element numerical approach of cathode design based on the potential distribution in inter-electrode gap. In order to ensure the convergence of finite element numerical approach and increase the accuracy in cathode design, the cathode shape should be iterated to eliminate the design errors in computational process. Several experiments are conducted to verify the machining accuracy of the designed cathode. The experimental results have proven perfect convergence and good computing accuracy of the proposed finite element numerical approach by the high surface quality and dimensional accuracy of the machined blades.  相似文献   

16.
Active control of turbine blade tip clearance continues to be a concern in design and control of gas turbines. Ever increasing demands for improved efficiency and higher operating temperatures require more stringent tolerances on turbine tip clearance. In this paper, a turbine tip clearance control apparatus and a model of turbine tip clearance are proposed; an implicit active generalized predictive control (GPC), with auto-regressive (AR) error modification and fuzzy adjustment on control horizon, is presented, as well as a quantitative analysis method of robust per- turbation radius of the system. The active clearance control (ACC) of aero-engine turbine tip clear- ance is evaluated in a lapse-rate take-off transient, along with the comparative and quantitative analysis of the stability and robustness of the active tip clearance control system. The results show that the resultant active tip clearance control system with the improved GPC has favorable steadystate and dynamic performance and benefits of increased efficiency, reduced specific fuel consump- tion, and additional service life.  相似文献   

17.
《中国航空学报》2016,(1):228-237
A novel biased proportional navigation guidance (BPNG) law is proposed for the close approach phase, which aims to make the spacecraft rendezvous with the target in specific relative range and direction. Firstly, in order to describe the special guidance requirements, the concept of zero effort miss vector is proposed and the dangerous area where there exists collision risk for safety consideration is defined. Secondly, the BPNG, which decouples the range control and direc-tion control, is designed in the line-of-sight (LOS) rotation coordinate system. The theoretical anal-ysis proves that BPNG meets guidance requirements quite well. Thirdly, for the consideration of fuel consumption, the optimal biased proportional navigation guidance (OBPNG) law is derived by solving the Schwartz inequality. Finally, simulation results show that BPNG is effective for the close approach with the ability of evading the dangerous area and OBPNG consumes less fuel compared with BPNG.  相似文献   

18.
In this paper, a novel vibration-suppression open-loop control method for multi-mass system is proposed, which uses two-stage velocity compensating algorithm and fuzzy I + P control- ler. This compensating method is based on model-based control theory in order to provide a damp- ing effect on the system mechanical part. The mathematical model of multi-mass system is built and reduced to estimate the velocities of masses. The velocity difference between adjacent masses is cal- culated dynamically. A 3-mass system is regarded as the composition of two 2-mass systems in order to realize the two-stage compensating algorithm. Instead of using a typical PI controller in the velocity compensating loop, a fuzzy I + P controller is designed and its input variables are decided according to their impact on the system, which is different from the conventional fuzzy PID controller designing rules. Simulations and experimental results show that the proposed veloc- ity compensating method is effective in suppressing vibration on a 3-mass system and it has a better performance when the designed fuzzy I + P controller is utilized in the control system.  相似文献   

19.
飞机整体壁板广义槽分层识别方法及其实现算法(英文)   总被引:5,自引:0,他引:5  
To automatically obtain a machining area in numerical control (NC) programming, a data model of generalized pocket is established by analyzing aircraft integral panel characteristics, and a feature recognition approach is proposed. First, by reference to the practical slice-machining process of an aircraft integral panel, both the part and the blank are sliced in the Z-axis direction; hence a feature profile is created according to the slicing planes and the contours are formed by the intersection of the slicing planes with the part and its blank. Second, the auxiliary features of the generalized pocket are also determined based on the face type and the position, to correct the profile of the pocket. Finally, the generalized pocket feature relationship tree is constructed by matching the vertical relationships among the features. Machining feature information produced by using this method can be directly used to calculate the cutter path. The validity and practicability of the method is verified by NC programming for aircraft panels.  相似文献   

20.
A novel integrated guidance and autopilot design method is proposed for homing missiles based on the adaptive block dynamic surface control approach. The fully integrated guidance and autopilot model is established by combining the nonlinear missile dynamics with the nonlinear dynamics describing the pursuit situation of a missile and a target in the three-dimensional space. The integrated guidance and autopilot design problem is further converted to a state regulation problem of a time-varying nonlinear system with matched and unmatched uncertainties. A new and simple adaptive block dynamic surface control algorithm is proposed to address such a state regulation problem. The stability of the closed-loop system is proven based on the Lyapunov theory. The six degrees of freedom (6DOF) nonlinear numerical simulation results show that the proposed integrated guidance and autopilot algorithm can ensure the accuracy of target interception and the robust stability of the closed-loop system with respect to the uncertainties in the missile dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号