首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
基于CFD/CSD的非线性气动弹性分析方法   总被引:2,自引:2,他引:0  
崔鹏  韩景龙 《航空学报》2010,31(3):480-486
提出了一种基于计算流体力学/计算结构动力学(CFD/CSD)的非线性气动弹性分析方法,并应用于切尖三角翼的非线性颤振和极限环振荡(LCO)研究。该方法将非线性有限元(FEM)和CFD计算相结合,并辅以高精度的界面插值,能够分析结构和气动非线性共存的气动弹性问题。结构部分以四边形平板壳元为基础,采用更新的拉格朗日(UL)方法分析结构大变形引起的几何非线性问题。气动部分以Navier-Stokes(N-S)方程作为控制方程,采用CFD方法计算跨声速气动力。机翼的非线性颤振计算表明了方法的有效性。最后应用该方法研究了切尖三角翼的LCO现象,其计算精度明显优于已有结果。  相似文献   

2.
This article traces the evolution of long range jet transport aircraft over the 50 years since Kuechemann founded the journal Progress in Aerospace Sciences. The article is particularly focused on transonic aerodynamics. During Kuechemann's life time a good qualitative understanding had been achieved of transonic flow and swept wing design, but transonic flow remained intractable to quantitative prediction. During the last 50 years this situation has been completely transformed by the introduction of sophisticated numerical algorithms and an astonishing increase in the available computational power, with the consequence that aerodynamic design is now carried out largely by computer simulation. Moreover developments in aerodynamic shape optimization based on control theory enable a competitive swept wing to be designed in just two simulations, as illustrated in the article. While the external appearance of long range jet aircraft has not changed much, advances in information technology have actually transformed the entire design and manufacturing process through parallel advances in computer aided design (CAD), computational structural mechanics (CSM) and multidisciplinary optimization (MDO). They have also transformed aircraft operations through the adoption of digital fly-by-wire and advanced navigational techniques.  相似文献   

3.
In this paper, a new permeable adaptive integration surface is developed in order to evaluate transonic rotor noise in accordance with FW-H_pds equations(Ffowcs Williams-Hawkings equations with penetrable data surface). Firstly, a nonlinear near-field solution is computed on the basis of Navier-Stokes equations, which is developed on moving-embedded grid methodology.The solution calculated through the present CFD method is used as the input for acoustic calculations by FW-H_pds equations. Then, two criteria for constructing integration surfaces are established based on the analysis of the quadrupole source strength and the nonlinear characteristic.A new surface is determined adaptively by the pressure gradient or density in a given flowfield,eschewing the uncertainties associated with determining cylinder-shaped integration surfaces. For varying hover cases, transonic noises are simulated with new integration surfaces for a UH-1 model rotor. Furthermore, numerical results of the new integration surface derived from the density perturbation value conform better to experimental data than results derived from the pressure gradient.Finally, the integration surface given by jrqj being 0.1, which is an applicable criterion obtained from hover cases, is used to predict transonic rotor noise in forward flight. The computational accuracy of the new integration surface method has been validated in predicting transonic rotor noise of an AH-1 model rotor at different advance ratios.  相似文献   

4.
Mesh generation: Art or science?   总被引:1,自引:0,他引:1  
Mesh generation has evolved to the point where highly complicated domains can be covered by a variety of mesh types including hexahedral, tetrahedral and overset meshes. The application of these methods to computational aerodynamics has become a routine exercise and numerical predictions over complete aircraft now complement experimental results obtained from wind tunnels. This paper surveys the main developments that have taken place and traces the evolution of mesh generation over the last 35 years. This is followed by an assessement of the accuracy of Navier Stokes codes that are currently in use for predicting the drag of an aircraft at transonic cruise. The relationship between solution accuracy, mesh size and mesh type is examined in some detail and the implications for further research are discussed.  相似文献   

5.
高压涡轮流场中存在多尺度的涡系和波系结构,对涡轮部件的气动、传热以及结构强度都有重要的影响。为快速准确把握其流动机理,对Menter发展的尺度自适应CFD方法进行了改进,并将新方法分别应用于圆柱绕流以及VKI LS89跨声速涡轮叶栅等典型流动算例。结果表明改进后的尺度自适应模型具有出色的空间分辨率,模拟结果能与大涡模拟、实验数据基本吻合且计算成本约为文献中大涡模拟的2.5%。  相似文献   

6.
 Active stability augmentation system is an attractive and promising technology to suppress flutter and limit cycle oscillation (LCO). In order to design a good active control law, the control plant model with low order and high accuracy must be pro-vided, which is one of the most important key points. The traditional model is based on low fidelity aerodynamics model such as panel method, which is unsuitable for transonic flight regime. The physics-based high fidelity tools, reduced order model (ROM) and CFD/CSD coupled aeroservoelastic solver are used to design the active control law. The Volterra/ROM is applied to constructing the low order state space model for the nonlinear unsteady aerodynamics and static output feedback method is used to active control law design. The detail of the new method is demonstrated by the Goland+ wing/store system. The simu-lation results show that the effectiveness of the designed active augmentation system, which can suppress the flutter and LCO successfully.  相似文献   

7.
A transonic turbulent separation flow in a converging-diverging transonic diffuser was studied, when there existed a separation bubble on the top wall of the diffuser triggered by strong shock-wave-boundary-layer-interaction (SWBLI). To capture the essential behavior of this complex flow, the current study utilized an anisotropic turbulence model developed on the basis of a statistical partial average scheme. The first order moment of turbulent fluctuations, retained by a novel average scheme, and the turbulent length scale, can be determined from the momentum equations and mechanical energy equation of the fluctuation flow, respectively. The two physical quantities were readily used to construct the nonlinear anisotropic eddy viscosity tensor and to significantly improve the computational results. Comparisons between the computational results and experimental data were carried out for velocity profiles, pressure distribution, skin friction coefficient, Reynolds stress as well as streamline vectors distribution. Without using any empirical coefficients and wall functions, the numerical results were in good agreement with the available experimental data, further confirming that the nonlinear anisotropic eddy viscosity tensor is the decisive factor for the success of the computational results.  相似文献   

8.
跨音速运输机机身后体对航向静稳定性影响研究   总被引:1,自引:0,他引:1  
采用课题组开发的CFD数值计算软件分别研究了跨音速上单翼布局运输飞机机身后体对航向静稳定导数的影响。研究过程中选择了两种后体构型型面:圆型面和立椭圆型面.分别对其气动力特性进行了计算分析。结果表明:圆型面后体的机身提供的航向静不稳定导数比立椭圆型面后体的机身提供的航向静不稳定导数大17.5%。  相似文献   

9.
当前结冰后的动力学仿真主要基于线性气动力模型及结冰影响模型进行,对于结冰后非线性气动力模型的研究较少,然而这对于飞机结冰后在大迎角等非线性区域的动力学分析极为重要.研究了飞机结冰后的非线性气动力模型,将结冰后线性气动力模型的估算方法扩展到非线性气动力模型上,并在结冰后大迎角区域风洞试验数据的基础之上,对失速及过失速区的气动参数变化进行修正.研究了飞机在不同升降舵脉冲信号作用下的动态响应.仿真结果表明,计算结果能够较好地反映飞机在结冰状态下的动力学特性,提出的非线性结冰影响模型能够为结冰条件下研究飞机失速及过失速区域的动力学特性提供理论支撑.  相似文献   

10.
The grid fin is an unconventional control surface used on missiles and rockets. Although aerodynamics of grid fin has been studied by many researchers, few considers the aeroelastic effects.In this paper, the static aeroelastic simulations are performed by the coupled viscous computational fluid dynamics with structural flexibility method in transonic and supersonic regimes. The developed coupling strategy including fluid–structure interpolation and volume mesh motion schemes is based on radial basis functions. Results are presented for a vertical and a horizontal grid fin mounted on a body. Horizontal fin results show that the deformed fin is swept backward and the axial force is increased. The deformations also induce the movement of center of pressure, causing the reduction and reversal in hinge moment for the transonic flow and the supersonic flow,respectively. For the vertical fin, the local effective incidences are increased due to the deformations so that the deformed normal force is greater than the original one. At high angles of attack, both the deformed and original normal forces experience a sudden reduction due to the interference of leeward separated vortices on the fin. Additionally, the increment in axial force is shown to correlate strongly with the increment in the square of normal force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号