首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
惯性导航系统的误差随时间累积,旋转调制技术可以有效地提高惯导系统的长航时精度,旋转调制方案是决定旋转式捷联惯导系统导航精度的一个重要因素.针对双轴旋转惯导系统,相较于16次序转位方案,提出了一种新的32次序双轴旋转调制方案.根据捷联惯导系统的误差方程,推导出旋转捷联惯导的误差方程,分析了误差补偿的机理,研究了惯性器件常值偏置误差、标度因数误差和安装角误差的传播特性.仿真结果表明,32次序双轴旋转调制方案相对于16次序转位方案有明显的优势,可以有效地降低姿态角误差和经纬度误差.  相似文献   

2.
在传统指北式惯导系统中,通过对东向陀螺仪施加连续恒定转动力矩,令平台坐标系绕其东向陀螺仪敏感轴进动,可对北向及天向惯性器件误差形成调制,抑制相关导航定位误差,达到提高平台惯导系统精度的目的.建立了沿平台系东向轴连续转动的指北式平台系统无阻尼情况下的导航机械编排方程及误差方程,分析了其静基座下的误差传播特性并进行了仿真验证.结果表明,同传统指北式导航方法相比,在不改变系统结构和惯性器件精度的前提下,系统中与北向及天向惯性器件误差相关的常值及随时间积累项被调制为零误差和常值误差、经度误差随时间发散趋势得到明显抑制,系统长时间定位精度得到明显改善.  相似文献   

3.
针对双轴旋转惯导惯性器件的随机误差无法在导航过程中自动进行补偿的问题,提出优化的两位置重调(TPR)的方法来补偿系统的随机误差导致的方位和位置误差,以提高双轴旋转惯导的长航时精度.与传统两位置重调(CPR)方法相比,使用优化的误差传递方程的两位置重调的方法,可以在少于6h条件下估计出系统的方位误差,从而使得系统的位置精度和方位精度都得以极大的提高.根据惯性器件的随机误差导致的方位误差的特性,建立了TPR的误差模型.通过仿真,证明了该方法的有效性.  相似文献   

4.
陀螺标度因数误差是影响长航时船用旋转调制惯导系统的关键误差源,其与地球自转和载体运动的耦合误差,可导致惯导系统误差发散。针对此问题,结合船用惯导使用特点,采用外航向、内俯仰的双轴旋转框架结构。在此基础上,提出了一种基于惯性系的双轴旋转惯导系统多位置转停调制方案,通过补偿地球自转和载体运动在双轴旋转惯导内外框架旋转轴上的投影分量,可显著降低陀螺标度因数误差对长航时导航精度的影响。数学仿真和船载试验结果表明,在载体航向角运动的场景下,该方法与传统的双轴旋转调制方案相比可有效抑制地球周期项振幅的增大,系统导航位置误差的发散也降低50%以上。  相似文献   

5.
惯性器件常值及慢变误差是影响捷联惯导系统精度的主要因素之一,所以在捷联惯导系统出厂前需要对常值及慢变误差参数进行标定。但这些误差参数会随时间发生变化,对于高精度捷联惯导系统,每次启动后需要对惯性器件的误差参数进行重新标校。针对光纤惯导系统,建立了IMU误差模型,并根据提出的旋转式捷联惯导系统自标校转位方案原则设计出了一种8位置自标校方案,对惯性器件标定参数进行激励和辨识,并建立了Kalman滤波状态方程及量测方程,对惯导系统误差参数进行在线标定。实验结果表明,该方案对其惯性器件误差参数能进行准确估计,具有一定的参考价值。  相似文献   

6.
旋转调制技术能够抑制陀螺和加速度计的误差,提高惯性导航系统的导航精度。从捷联惯导系统的误差方程出发,推到出了单轴旋转惯导系统的误差传播方程,在此基础上分析了旋转调制的基本原理。分别对陀螺和加速度计常值偏差、标度因数误差、安装误差和转台安装误差等在旋转调制下的影响进行了研究,仿真分析了旋转调制提高系统导航精度的作用,最后在实验室条件下做静止导航实验进行了验证。研究的结果能为单轴旋转惯导系统的研究和开发提供一定的理论参考。  相似文献   

7.
捷联惯导系统的一种系统级标定方法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对三轴转台定位精度高的特点,设计了一种基于速度误差和姿态误差角作为观测量的系统级标定方法.在捷联惯性测量组合(SIMU)的导航误差方程和惯性器件误差参数模型的基础上,推导了导航速度误差和姿态误差角与IMU的误差参数所呈现的关系,依此给出了最简单的位置编排准则.通过观测不同位置下捷联惯导系统的速度误差变化率和姿态误差角,辨识IMU的误差模型系数,进而达到高精度捷联惯导系统标定目的.  相似文献   

8.
刘建业  钱伟行  曾庆化  孙茜 《航空学报》2010,31(11):2238-2244
 新型瞄准吊舱系统中安装捷联惯导系统,使其在跟踪、探测目标的同时具备一定的自主导航能力。吊舱系统中的捷联惯导一般采用较低精度的惯性器件配置,且传递对准实现过程受到机动条件的严格限制。针对该问题提出了一种“比力积分/角速度匹配”传递对准方法,利用主惯导导航信息与惯性器件输出,以及子惯导惯性器件输出实现子惯导的对准。推导了基于主、子惯导系统误差的数学模型,详细分析了器件精度与低动态条件对系统状态量可观测度的影响,并针对低精度惯性器件与低动态条件下的传递对准性能进行了数字仿真。仿真结果表明,该方法在器件低精度与低动态条件下,对准性能达到5′,优于常规传递对准方法,可满足瞄准吊舱捷联惯导系统的快速对准性能要求。  相似文献   

9.
为降低捷联惯导系统误差参数标定过程对高精度转台的要求,提出一种基于速度误差的系统级标定方法。在惯性器件误差参数模型和捷联惯导系统误差方程的基础上,以惯导系统转动前后的导航速度误差为观测量,编排设计旋转方案,对加速度计和陀螺的误差参数进行拟合标定。仿真结果表明,与传统的分立式标定方法相比,在保证标定精度的同时,对高精度转台的要求更低,可应用于外场标定。  相似文献   

10.
针对车载武器捷联惯导系统动基座传递对准问题,研究了传递对准的基本原理,建立了地面武器弹载子惯导系统(SINS)动基座速度匹配传递对准的误差模型,并考虑SINS的惯性器件误差。采用了零速校正方法用以提高载车主惯导系统(MINS)的导航精度。根据速度匹配传递对准原理,推导了速度匹配方式下MINS与SINS导航解算速度之差的量测方程。在此基础上,设计了一种传递对准卡尔曼滤波器,并进行了仿真研究。仿真结果表明:SINS速度匹配传递对准在短时间内即可估计出SINS的水平失准角,对准精度可达到0.4'以内,方位失准角在经过多次零速校正过程中的加减速机动后,对准精度达到0.7'以内。  相似文献   

11.
当前,主要通过采用惯导/卫星导航组合或者惯导/里程计组合的方式来实现 车辆的定位定向;卫星信号良好时,惯导系统与卫星导航组合实现车辆定位定向,当卫 星导航信号不好甚至没有信号无法正常工作时,惯导系统与里程计组合实现车辆定位定 向。提出一种惯导/卫星导航/里程计三者的一体化组合方案,针对惯导、北斗、里程计 这三项测量设备构成的组合系统建立了统一的误差状态模型、组合量测模型以及反馈修 正模型,并通过卡尔曼滤波器来实现三者的一体化紧组合,这种惯导/北斗/里程计一体 化的紧组合方式,能更好地实现三者信号之间的充分交流与融合。将这种一体化紧组合 方法与传统的惯导/北斗组合、惯导/里程计组合方法进行了仿真比较,结果表明:惯导/ 北斗/里程计一体化的紧组合方法能更加快速、准确得到传感器误差( 包含惯组误差、 北斗误差、里程计误差)的在线估计,更能有效提高各传感器的测量精度。  相似文献   

12.
作为导航领域常用的组合导航方式,全球导航卫星系统(GNSS)/惯性导航系统(INS)组合导航在GNSS信号失锁后,由于惯性测量单元(IMU)误差随时间迅速积累,其定位结果会偏离载体真实位置,导航精度下降.针对此问题,提出了一种长短期记忆网络(LSTM)辅助的算法,称之为深度卡尔曼滤波(DKF)算法.DKF算法的核心思想是使用LSTM训练IMU误差模型,然后通过训练出的模型预测IMU误差,最后将预测的IMU误差代入IMU数据以校正导航结果.仿真结果表明:在200s测试数据上,DKF算法将误差从1.1537m/s降低到0.3746m/s.与平均预测、卡尔曼预测和最小二乘估计等方法相比,DKF算法的误差最小,具有更优越的导航性能.  相似文献   

13.
激光捷联惯导工作时,惯组内的温度会随着时间不断升高,引起惯性器件标度因数和零偏的变化,从而无法满足惯组在全温范围内工作.因此,有必要采取相应措施来减少温度带来的误差.提出一种通过3次样条插值法建立初始模型,不断迭代计算模型偏差修正样条曲线的方法,确立激光陀螺和石英挠性加速度计的温度误差模型存入DSP 中,最终由导航计算机实现惯组输出的实时补偿.通过标定和静态通电验证了模型的正确性和重复性,为进一步提高惯导精度奠定了基础.  相似文献   

14.
旋转技术能够有效调制激光陀螺和加速度计的误差,提高惯性导航系统的精度。首先基于惯性测量单元的误差模型,分析了旋转技术的基本原理。然后对旋转技术的旋转方案、最优转动速率、旋转机构误差对系统精度的影响、载体角运动对旋转效果的影响、采用旋转技术的惯导解算、采用旋转技术的初始对准与测漂等进行了综述,探讨了我国研究旋转技术的重点研究方向,为开展我国旋转式光学陀螺惯导系统的研究提供了一定参考。  相似文献   

15.
将MEMS惯性系统分为ISA、IMU和INS三级,分别介绍了国内外的研究概况,并对MEMS INS的发展趋势进行了讨论,供广大惯性导航研究人员参考。  相似文献   

16.
当潜航器(AUV)进行输水隧洞巡检时,多普勒测速仪(DVL)声波会对前视声纳图像产生干扰,针对这一问题提出了一种从AUV上卸载DVL,直接从前视声纳图像中提取栽体速度,而后和惯性测量单元(IMU)进行组合导航的方法.该方法根据前视声纳成像原理,建立起每相邻两帧声纳图像间载体的相对位移与配对特征点的图像坐标之间的联系,针对水底为局部平坦区域的情况,对特征点仰角进行了估算.通过惯导速度约束和随机抽样一致(RANSAC)算法,剔除误差较大的配对点,然后利用提取出的载体速度作为观测量进行卡尔曼滤波.经实际数据测试,惯性导航系统(INS)/前视声纳组合的总体性能和INS/DVL组合非常接近,以输水隧洞内的接缝线作为定位基准,INS/前视声纳组合导航在沿隧洞方向上的最大相对定位误差小于行程的1%.  相似文献   

17.
机抖激光陀螺捷联系统普遍采用抖频偏频技术消除闭锁效应的影响,这使得激光惯导成为自带激励源的动力学系统,动力学系统结构参数的设计将影响陀螺抖动效率和陀螺测量精度。在陀螺抖动驱动力条件下,建立了包含激光惯导箱体、惯性测量本体、陀螺、减振器、抖轮在内的较为完整的动力学模型,给出了该模型的解答过程和Matlab仿真计算结果,讨论了不同结构参数对抖动效率及惯导精度的影响规律,并在此基础上提出了激光惯导结构基于动特性设计的原则和方法。经验证,该方法能够有效指导结构转动惯量等参数设计,提高了设计质量,有效避免了激光惯导由结构设计不足而导致的动力学问题。  相似文献   

18.
针对惯组长期贮存过程中陀螺和加速度计零偏漂移的问题, 提出了一种利 用激光多普勒测速仪辅助捷联惯导的在线标定方案。给出了包括激光多普勒测速仪安装 误差角和惯组安装误差角的航位推算误差方程。基于航位推算误差方程建立了闭环卡尔 曼滤波器,对惯组零偏误差、激光多普勒测速仪安装误差角和惯组方位安装误差角进行 在线标定。仿真结果表明,加速后激光多普勒测速仪安装误差角和惯组方位安装误差角 得到估计;方位角改变后惯组零偏误差也得到估计。该方法允许跑车前不用综合标定, 直接装订前一次的安装角参数,缩短了准备时间。  相似文献   

19.
针对舰艇在极区航行时,其常用惯性导航系统机械编排存在精度下降、无北向基准等问题,设计了适用于极区工作的格网坐标系捷联惯性导航系统机械编排.在构建了格网坐标系参考框架的基础上,建立了格网坐标系捷联惯导系统的机械编排,并分析了其误差传播特性.通过误差分析,确定了格网坐标系捷联惯导系统中存在的周期性振荡,并提出了适用于格网坐标系捷联惯导系统的阻尼技术,有效抑制了周期性振荡.最后,通过仿真实验验证了该系统在极区工作的可行性和阻尼技术的有效性.  相似文献   

20.
捷联惯导/里程计组合导航系统中,里程计的刻度系数和相对惯组的安装误差角的标定是影响组合导航精度的关键因素.根据工程应用情况,提出经典标定方法和卡尔曼滤波标定方法,并对两种方法进行比较.在标定出刻度系数和安装误差角后,将该数据装订到惯组中进行车载试验验证,将里程计解算的速度和位置与GPS实测值进行比较.试验结果表明:跑车...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号