首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
热压罐/VARTM组合成型新工艺是树脂基复合材料成型工艺的一个新发展,特别适用于平面、立体织物增强高粘度树脂基复合材料的液体注射成型,可以应用于航空、航天等先进复合材料制造领域.  相似文献   

2.
盛磊  李玉英 《宇航材料工艺》1993,23(4):24-27,74
本文简要介绍了热塑性树脂基复合材料的基本特点、主要原材料、热成型工艺与设备,着重介绍长纤维增强热塑性树脂基复合材料的热成型工艺,并与热固性树脂基复合材料对比,分析其优缺点及存在的问题,同时展望其应用与发展前景。  相似文献   

3.
主要介绍了我国航天工业领域先进树脂基复合材料的原材料(增强材料和基体树脂)、成型工艺技术(热压罐工艺、RTM工艺、缠绕成型工艺、自动铺放技术)和复合材料制品的加工装配工艺技术和应用等方面的最新进展,并讨论了我国航天先进树脂基复合材料制造技术的发展趋势。  相似文献   

4.
主要介绍了国内外树脂基结构复合材料及其成型工艺的发展现状,详细讨论了环氧树脂、双马来酰亚胺树脂、氰酸酯和聚酰亚胺复合材料以及模压、热压罐和RTM工艺,针对轻量化和低成本制造要求,提出了结构复合材料发展建议。  相似文献   

5.
新型含硅芳炔树脂复合材料制备工艺   总被引:1,自引:0,他引:1       下载免费PDF全文
以含硅芳炔树脂为基体、高强玻璃布为增强材料制备了新型含硅芳炔树脂复合材料,探讨了树脂的固化工艺,研究了树脂含量、成型温度和成型压力对复合材料性能的影响,确定了含硅芳炔树脂复合材料成型的工艺参数:树脂质量分数31%、升温程序170℃/2h+210℃/2h+250℃/4h、成型压力1.0MPa。优化工艺条件下制备的复合材料弯曲强度达278MPa。  相似文献   

6.
对国内外PMR型聚酰亚胺树脂基复合材料的研究现状以及在航空航天等领域的应用进行了总结.简要介绍了国内在改进复合材料成型工艺、提高耐热性和力学性能等方面所取得的研究进展,列举了新型耐高温聚酰亚胺复合材料的流变、力学和物理性能等,并展望了该技术的发展方向和研究重点.  相似文献   

7.
用于复杂形状复合材料制造的水溶性芯模材料   总被引:1,自引:0,他引:1  
提出了一种能够用于树脂基复合材料成型用的水溶性型芯模材料,该材料既能满足树脂基复合材料成型时的温度要求,又能在复合材料成型完成后进行水溶脱除.主要研究了水溶性型芯模材料的组成、制备工艺与耐温性、易脱除等相关性能,并对水溶性芯模材料的水溶性作了评价和表征.  相似文献   

8.
针对树脂基复合材料热压成型工艺过程,以构件成型所需的温度场和压力场两个影响构件成型质量的主要因素为主线,从有限元数值模拟方面,对树脂基复合材料热压成型工艺的研究现状及存在问题进行了综述。  相似文献   

9.
基于传统VARI工艺开发了一种可以满足航空复合材料构件大规模生产需求的新型低成本液体成型技术。采用了多种工艺措施确保注胶口和出胶口处树脂压力和树脂流动控制,对比试验表明,采用新型液体成型技术所制备的复合材料层合板厚度均匀性能够接近预浸料/热压罐成型的复合材料层合板的水平。采用新型液体成型技术所研制的民机副翼结构件具有良好的外形和内部质量,可以满足航空复合材料结构的应用需求。  相似文献   

10.
聚酰亚胺复合材料因其优异的耐高温性能和机械性能,在航空航天领域获得了广泛应用,但复杂、高成本的热压罐成型工艺难以满足聚酰亚胺树脂基复合材料快速加工成型,限制了其进一步的应用。本文综述了适用于树脂传递模塑成型(RTM)技术的聚酰亚胺树脂及其复合材料的研究现状与发展趋势,重点论述了苯乙炔基封端的聚酰亚胺树脂及其复合材料的国内外研究情况,提高RTM技术成型聚酰亚胺树脂及其复合材料耐温等级的同时保持低充模黏度和高韧性将会是重要的发展方向。  相似文献   

11.
沈超 《航空学报》2008,29(3):752-756
 采用芳香二胺对3238韧性中温固化环氧树脂体系进行了改性。通过芳香二胺和环氧树脂预先反应,消除了芳香二胺对中温环氧树脂的固化及工艺的影响,改性前后差示扫描量热法(DSC)初始温度和峰顶温度的差别仅有3 ℃,最终固化程度的差别也仅有1%。通过芳香二胺刚性结构的引入,由于芳香二胺和环氧树脂的交联密度高于双氰胺环氧树脂体系,因此引入芳香二胺刚性结构提高了3238树脂的耐热性,干态玻璃化转变温度提高了29 ℃,且纯固化后树脂吸湿量降低了0~34%,湿态玻璃化转变温度提高了46 ℃。改性后树脂可能形成了高低交联密度区,产生了固化物交联状态的不均匀,在提高树脂体系耐热性能的同时,保持其原有的韧性,树脂浇注体的拉伸应力应变曲线呈明显的塑性变形,拉伸断裂伸长率达5~31%,复合材料的断裂韧性达1 133 J/m2。  相似文献   

12.
阐述了采用单向带+自动铺丝+自动辊压、自动铺丝+热隔膜、编织预浸料、编织预成型体+LCM、NCF预成型体+LCM 5种工艺方法制造复合材料机身隔框,详细描述了各类工艺方法的技术细节、优缺点以技术应用状况及发展趋势,最后从力学效益、生产效率、综合成本进行对比分析,为复合材料机身隔框的制造提供工艺借鉴。  相似文献   

13.
3232树脂预浸料的贮存试验研究   总被引:3,自引:0,他引:3  
沈超 《航空材料学报》2003,23(Z1):167-170
针对3232中温固化环氧树脂树脂预浸料,观察了室温和低温(-18℃)贮存时间对其物理和力学性能的影响,结果显示,随着贮存时间的延长,与树脂固化相关的预浸料物理性能均发生了变化,并对复合材料的成形工艺产生影响.与室温贮存相比,低温贮存时对各项性能的影响明显减缓.  相似文献   

14.
采用短乱纤维压制成形,应用树脂法与CVD法复合工艺提高碳盘密度是国外最先进的生产工艺之一,而压制成形是该工艺的关键工装,本文介绍了压制成形模具的设计原理。  相似文献   

15.
齐乐华  史忠科 《航空学报》2008,29(4):1055-1060
 液态浸渗挤压是一种可以由液态金属直接成形复合材料管、棒、型材的新工艺,针对该工艺过程参数和成形过程难于控制的现存问题,在对其辨识建模特点进行深入分析的基础上,采用基于U-D分解的非线性模型和参数在线估计方法,辨识出液-固挤压铝基复合材料过程的动态模型。实验结果表明,该方法可以提高模型和参数在线估计的计算效率和数值稳定性,辨识模型能很好地反映系统的动态特性,说明该在线估计方法工程应用的有效性,同时也为液-固挤压复合材料工艺的实际应用和过程控制奠定了基础。  相似文献   

16.
非热压罐成型(out of autoclave process,OoA)技术是实现结构复合材料低成本制造的有效途径,是当前复合材料研究领域的热点之一。本文介绍了OoA成型复合材料国内外的研究前沿以及在航空航天领域的应用现状,从材料体系和成型工艺两大方面总结了OoA成型过程中的缺陷控制方法。在OoA预浸料成型技术中,可通过尽量减少树脂体系中挥发物含量、精细调控树脂体系反应和流变特性、控制预浸料中纤维和树脂的浸润程度、优化成型工艺等手段有效降低复合材料的孔隙率等缺陷。  相似文献   

17.
基体含量影响着复合材料结构的性能,针对复合材料结构的稳定性设计,基于复合材料细观力学以及经典层合理论,分析复合材料层合板中的基体含量对于其材料性能,尤其是稳定性的影响.通过计算得出:随着基体含量的增加,材料的性能略有下降,但是由于基体含量增大而导致的单层板厚度增加,使得层合板的稳定性大幅提高.因此,在复合材料结构的稳定性设计中,应该考虑基体含量的影响.  相似文献   

18.
通过对成型工艺选择、模具结构设计及工艺参数的研究,探索了薄壁异形树脂基复合材料近净尺寸成型。研究结果表明,注料式模压克服了传统模压成型装料腔狭窄不易装料的问题,实现了薄壁异形树脂基复合材料的近净尺寸成型,极大地提高了材料利用率、降低了加工难度、缩短了成型周期。  相似文献   

19.
采用液体端羧基丁腈橡胶(CTBN)与氰酸酯树脂(BCE)共混以改善氰酸酯树脂的韧性,利用凝胶时间法、示差扫描量热法(DSC)和傅立叶红外光谱法(FTIR)确定BCE/CTBN的固化工艺,通过透射电子显微镜对微相结构进行了分析,研究了不同制备工艺对改性后树脂体系微相结构和力学性能的影响规律。结果表明,分别采用固化前对BEC/CTBN施加高速剪切力和预聚氰酸酯的方法可有效解决CTBN增韧BCE树脂中存在的宏观相分离问题;施加高速剪切力后,体系(每100份BCE中含10份CTBN)冲击韧性可达到14.4kJ·m-2,比改性前(冲击韧性为6.0kJ·m-2)提高了140%;预聚氰酸酯后,体系冲击韧性可达到12.1kJ·m-2,比改性前提高了102%。研究还发现,工艺改进后,共混体系中以分散相存在的CTBN粒子形成胞状结构,这些含有包埋物的胞状CTBN颗粒有利于提高BCE树脂基体的韧性和强度。  相似文献   

20.
树脂基复合材料轻质结构具有轻质、高性能等优点,广泛应用于航天航空、高速列车和船舶等领域。通过对传统树脂基复合材料轻质结构制造工艺的综述分析,发现传统制造工艺具有过程复杂、周期长和生产成本高等缺陷,限制了树脂基复合材料轻质结构的发展。3D打印是一种先进的零件成形工艺,可实现复杂结构零件的快速制造,为高性能复合材料轻质结构的一体化制造提供了可能。介绍了树脂基复合材料轻质结构3D打印的研究进展,提出了基于连续纤维增强热塑性复合材料3D打印的高性能复合材料轻质结构的一体化制造工艺,并对其性能开展了初步研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号