首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于预测滤波器的GPS姿态估计   总被引:1,自引:1,他引:0  
杨静  张洪钺 《航空学报》2001,22(5):415-419
采用预测滤波器,利用全球定位系统的双差相位观测量实现载体姿态估计。该方法对初值的选取具有鲁棒性,可以在天线和可见星较少的情况下快速收敛到姿态精确解。仿真结果显示,该方法的姿态估计结果可以与基于非线性最小二乘的姿态估计结果相比拟,且受初值的影响小;采用双差相位测量比采用单差相位测量可以得到更佳的姿态估计效果;当使用三基线的天线阵时,在飞行机动较大的情况下采用近似正交布局的天线结构可以更好地估计姿态。  相似文献   

2.
We show that the use of nondedicated Global Positioning System (GPS) sensors to determine the attitude parameters of a vessel yields the same level of performance as the use of a dedicated multiantenna receiver, namely an agreement of the order of 0.1° (1σ). The test platform is a survey launch operating at cruising speeds of 10 to 15 kt. The dedicated multiantenna receiver is a four-antenna Ashtech 3DF unit, while the nondedicated sensor array consists of three NovAtel GPSCardTM receivers. The approach used to resolve the relative carrier phase integer ambiguities between the antennas is discussed and the use of antenna baseline constraints is analyzed. A least-squares procedure which utilizes all the position information from the antennas for the estimation of the attitude parameters and their accuracy is presented. The attitude determination results from the two configurations tested are intercompared  相似文献   

3.
GPS载体姿态测量中的LAMBDA方法研究   总被引:8,自引:0,他引:8  
研究了采用双基线方案测量载体的姿态,利用 GPS载波相位干涉测量基线矢量,引入 LAMBDA法解算整周模糊度,由 CPU时间图可以看出这种方法能快速而准确地解算整周模糊度,对于实时姿态测量(RAD)系统具有很好的应用价值。  相似文献   

4.
研究了基于GPS载波相位测量载体姿态的技术 ,采用了精度高速度快的平均场退火算法(MFANN)。MEFANN是竞争性的Hopfield神经网络和随机模拟退火算法结合起来的一种算法 ,用来求解最优姿态确定问题。首先阐述了GPS载波相位姿态测量基本原理 ,接下来建立了姿态测量系统数学模型 ,应用MFANN算法来解算整周模糊度和方位角 ,最后给出了应用MFANN方法求解的实例 ,说明该方法是有效的  相似文献   

5.
GPS 双基线载体姿态测量研究   总被引:8,自引:1,他引:7  
研究了采用双基线方案测量载体的姿态,利用GPS双差相位测量基线矢量,双差伪距观测值辅助解相位整周模糊,双频时引入空间变换缩小置信空间搜索次数,通过实例分析得出了正确解算相位模糊与观测次数、伪距测量精度的关系,并利用误差传播定律对姿态测量精度进行分析,结合卫星星历数据计算表明,在卫星运行周期内航向角和俯仰角平均测量精度在一定条件下优于2mrad.  相似文献   

6.
易彬  秦显平  谷德峰  鞠冰 《航空学报》2018,39(1):321187-321187
星间基线高精度确定是分布式干涉合成孔径雷达(InSAR)系统完成科学任务的重要保证,受星载全球定位系统(GPS)接收机连续跟踪弧段短、个别弧段共视GPS卫星个数少或模糊度固定成功率低、频繁轨道机动等因素影响,分布式InSAR高精度基线确定仍有不可靠的风险。通过多机构产品互比来识别基线精度较差的时间段,降低不可靠风险,并通过多机构产品融合进一步提高基线精度。选用重力反演与气候实验(GRACE)卫星数据进行实验,国防科技大学(NDT)和西安测绘研究所(CHS)采用不同的基线处理软件和简化动力学策略,保证了各自的基线产品具有一定的独立性。实验表明,多机构互比对可以有效识别基线精度较差的时间段,NDT和CHS的基线产品之间具有很好的一致性,互比对残差的均方根(RMS)在R、T、N方向分别为0.7、0.9、0.7 mm,二者之间没发现明显系统偏差,大约97.86%的基线三维互比对残差量级在2 mm以内。两个机构基线产品融合后发现可进一步降低基线产品中的随机波动误差,K/Ka波段测距(KBR)系统校核结果表明融合基线产品精度较NDT基线产品提高8.97%,较CHS基线产品提高29.21%。  相似文献   

7.
Flight Test Evaluation of a New GPS Attitude Determination Algorithm   总被引:1,自引:0,他引:1  
A new Global Positioning System (GPS) Attitude Determination Algorithm (GADA) is proposed, featuring the capability to keep its accuracy, even when the line-of-sight angle (LOS) of a given satellite vehicle (SV) is below the GPS horizontal antenna plane (HAP). The GADA model has been developed and evaluated through simulations and flight test campaigns, which comprised static and dynamic flight profiles, to best characterize the algorithm performance. As attitude reference a complete flight tests instrumentation (FTI) system was integrated into the testbed for the flight test campaign. The attitude measurements given by GADA and REQUEST algorithms are compared with those given by FTI (i.e., reference system). The results show that GADA accuracy is significantly better than that of REQUEST, for all flight conditions.  相似文献   

8.
利用GPS进行姿态估计的一种算法   总被引:3,自引:0,他引:3  
首先建立了全球定位系统(GPS)姿态确定的观测方程;然后给出了利用GPS进行飞行器姿态估计的模型,并对该模型进行了线性处理;最后利用攻推广卡尔曼滤波技术,针对某飞行器进行了仿真计算。计算结果表明,对于不同的测量噪声和系统噪声,滤波器都有较好的估计,姿态估计的精度明显高于单纯GPS姿态确定的精度,可以满足大多数飞行器对姿态确定的要求,证实了模型和算法可用性。  相似文献   

9.
Instantaneous GPS attitude determination   总被引:1,自引:0,他引:1  
A procedure for instantaneous GPS (Global Positioning Satellite) attitude determination, i.e., a solution for the GPS integrated carrier Doppler wavelength ambiguities using only measurements at a single epoch, is described. Most previous techniques to solve the phase ambiguity problem have required some form of time history processing relying on GPS satellite and/or user motion to provide enough geometry change to eliminate false solutions. The algorithm described assumes three noncollinear antennas and integrated carrier Doppler measurements from four or more satellites. Double-difference processing provides at least three independent observables for the two antenna separation vectors to compute the three attitude Euler angles  相似文献   

10.
A type of multi-spacecraft system with kinematical restraint but no structural restraint and force action is considered. Both the absolute and relative navigation information is required for this multi-spacecraft system, but the relative information is more critical and the accuracy requirements for relative information will be much higher than those for the absolute information. In this paper, the Global Positioning System (GPS)/Differential GPS (DGPS) are introduced and used for relative navigation. Relative motion of space vehicles is modeled. Relative position, relative velocity and relative attitude are represented and solved by GPS/DGPS measurements. Using a type of commercial GPS receiver onboard spacecraft and relative differential GPS technique, the relative navigation of space vehicles can be implemented in real-time  相似文献   

11.
An attitude determination algorithm suitable for micro aerial vehicle (MAV) applications is developed. The algorithm uses Earth's magnetic and gravity field vectors as observations. The magnetic field vector measurements are obtained from a magnetometer triad. The gravity field vector is measured by fusing information from an accelerometer triad with GPS/WAAS (wide area augmentation system) velocity measurements. Two linearization and estimator designs for implementing the algorithm are discussed. Simulation and experimental flight test results validating the algorithm are presented.  相似文献   

12.
High-accuracy orbits have been determined for satellites of the Global Positioning System (GPS), with submeter orbit accuracy demonstrated for two well-tracked satellites. Baselines of up to 2000 km in North America determined with the GPS orbits shows daily repeatability of 0.3-2 parts in 108 and agree with very long baseline interferometry (VLBI) solutions at the level of 1.5 parts in 10 8. Tests used to assess orbit accuracy include orbit repeatability from independent data sets, orbit prediction, ground baseline determination, and formal errors. One satellite tracked for eight hours each day shows RMS errors below 1 m even when predicted more than three days outside of a 1-week data arc. These results demonstrate the powerful relative positioning capability available from differential GPS tracking. Baselines have also been estimated between Florida and sites in the Caribbean region over 1000 km away, with daily repeatability of 1-4 parts in 108. The best orbit estimation strategies included data arcs of 1-2 weeks, process noise models for tropospheric fluctuations, combined processing of GPS carrier phase and pseudorange data, and estimation of GPS solar pressure coefficients  相似文献   

13.
 Aimed at low accuracy of attitude determination because of using low-cost components which may result in non-linearity in integrated attitude determination systems, a novel attitude determination algorithm using vector observations and gyro measurements is presented. The various features of the unscented Kalman filter (UKF) and optimal-REQUEST (quaternion estimator) algorithms are introduced for attitude determination. An interlaced filtering method is presented for the attitude determination of nano-spacecraft by setting the quaternion as the attitude representation, using the UKF and optimal-REQUEST to estimate the gyro drifts and the quaternion, respectively. The optimal-REQUEST and UKF are not isolated from each other. When the optimal-REQUEST algorithm estimates the attitude quaternion, the gyro drifts are estimated by the UKF algorithm synchronously by using the estimated attitude quaternion. Furthermore, the speed of attitude determination is improved by setting the state dimension to three. Experimental results show that the presented method has higher performance in attitude determination compared to the UKF algorithm and the traditional interlaced filtering method and can estimate the gyro drifts quickly.  相似文献   

14.
The next generation of low cost Global Positioning System (GPS) receivers for space navigation and attitude determination are positioned to take full advantage of the improvements made in the commercial GPS receivers used for terrestrial applications. There have been recent improvements made to the GPS receivers that include the addition of extra GPS satellite channels that can be tracked simultaneously. The older style GPS receivers were only able to handle five channels at a time. In order for proper determination of three-dimensional position, a minimum of four channels was required and the fifth channel of the receiver was reserved to perform search functions for finding the next satellite. This included searching for satellites that could be used to replace exiting satellites moving out of the Field of View (FOV). The search function also enables the GPS receiver to search for the best constellation for maximum performance accuracy. The fifth roaming channel also provided a best next-satellite selection capability in case the field of view to one of the satellites was blocked or shaded.  相似文献   

15.
Rotation method for direction finding via GPS carrier phases   总被引:2,自引:0,他引:2  
A baseline rotation method is proposed for determining the direction of the baseline vector via Global Positioning System (GPS) carrier phase measurements. The space difference technique is adopted to resolve GPS carrier phase cycle ambiguities. Possible applications include the determination of the aiming directions of artillery rockets and the line of sights of tracking radars, etc. For such armaments, the direction findings are important and the rotating mechanisms are well equipped already. A general baseline vector which can be rotated on a two-degree-of-freedom platform is considered first. The relationship among the baseline vector and the two rotation axes is not known. A sequence of rotations is used to change the configuration of the system to find the direction of the baseline. Under different circumstances such as the cases that some orthogonal conditions among the unknown vectors are given, simplified algorithms are devised. To verify our method, software simulation and hardware experiments have been conducted. The simulation outcomes are used to determine the experimental parameters, such as the length of the baseline, the rotation angles etc. The results of repeated hardware experiments show that the sample standard deviation for the azimuth angle and the elevation angle of the 1.35 m baseline vector are 0.91 deg and 1.23 deg, respectively. The GPS receivers employed are Motorola ONCOREs. The errors of the estimated direction angles induced by the inaccuracy of rotation angles, which are unavoidable due to the imperfectness of the mechanical structure, are analyzed as well. Numerical examples for the error analysis are included  相似文献   

16.
轻小型飞行器在飞行中卫星导航失效时,余度控制回路要求导航系统具有自主确定姿态的能力.提出了基于IMU的输出确定水平姿态的方法,并采用UKF实现飞行中的实时滤波估计.对某无人机实际飞行的MEMS型IMU数据进行了仿真,结果表明该方法给出的姿态角信息满足控制精度需求.将UKF与EKF滤波估计结果进行比较,UKF更具有优越性.  相似文献   

17.
A sequential filtering algorithm is presented for spacecraft attitude and attitude-rate estimation from Global Positioning System (GPS) differential carrier phase measurements. A third-order, minimal-parameter method for solving the attitude matrix kinematic equation is used to parameterize the state of the filter, which renders the resulting estimator computationally efficient. Borrowing from tracking theory concepts, the angular acceleration is modeled as an exponentially autocorrelated stochastic process, thus avoiding the use of the uncertain spacecraft dynamic model. The new formulation facilitates the use of aiding vector observations in a unified filtering algorithm, which can enhance the robustness and accuracy of the method. Numerical examples are used to demonstrate the performance of the method  相似文献   

18.
During the last years, there is an increasing demand for cheap and easy to operate platforms for surveillance and reconnaissance purposes. Therefore, the development of micro aerial vehicles is receiving an increasing attention. However, VTOL-MAVs often show an inherent instability that makes at least an automatic stabilization necessary, because otherwise the operator would not be able to keep these vehicles airborne. This requires the availability of navigation information, especially the vehicle's attitude has to be known.This paper addresses the development of an integrated navigation system based on MEMS inertial sensors and GPS for a VTOL-MAV. Special attention is paid to the handling of GPS outages. While usually periods without GPS aiding can be bridged using the unaided strapdown solution, the poor quality of the MEMS inertial sensors prohibits this approach here. Therefore, during GPS outages the accelerometer data is interpreted as approximate measurements of the local gravity vector. Additionally, the usage of a magnetometer providing measurements of the Earth's magnetic field is motivated and discussed. Finally, flight test results illustrate the performance of the resulting system, proving that the achieved attitude accuracy is sufficient for the automatic control of the MAV. This holds in situations with permanent GPS loss and dynamic maneuvering, too.  相似文献   

19.
利用GPS多天线定姿系统与低成本光纤陀螺IMU组合,以PC104作为组合导航计算平台,采用重调式松散组合算法,构建了低成本、高精度、高可靠性的车载航姿保持系统,并成功应用于移动卫星通讯系统。经测试,组合系统静态初始化时间小于2min,动态定姿精度优于0.1度,更新率为100Hz。该项技术可进一步拓展应用于舰载、机载等运动平台,前景可观。  相似文献   

20.
基于神经网络的航天器GPS/INS组合定姿系统   总被引:1,自引:0,他引:1  
基于GPS和惯性技术的组合导航系统是近年来导航系统的研究热点和主要发展方向.目前基于卡尔曼滤波方法的算法在稳定性、计算量、算法鲁棒性以及系统可观测性等方面仍然存在问题.基于神经网络技术研究了一种新的GPS/INS组合定姿自适应卡尔曼滤波方法,理论分析表明,该方法不但对姿态信息具有较好的估计性能,而且对系统模型的精确性、噪声特性具备良好的鲁棒性.最后,利用模拟数据对所研究算法进行了分析计算,与传统的卡尔曼滤波方法进行了比较、分析,结果表明所设计组合算法在精度、稳定性以及鲁棒性等方面较传统卡尔曼方法具有良好的特性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号