首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The problem of multisensor detection and high resolution signal state estimation using joint maximum a posteriori detection and high order nonlinear filtering techniques is addressed. The model-based fusion approach offers the potential for increased target resolution in range/Doppler/azimuth space. The approach employs joint detection/estimation filters (JDEF) for target detection and localization. The JDEF approach segments the aggregate nonlinear model over the entire target resolution space into a number of localized nonlinear models by partitioning the resolution space into a number of resolution subcells. This partitioning leads to extremely accurate state estimation. The proposed JDEF approach has a built-in capability for automatic data alignment from multiple sensors, and can be used for centralized, decentralized, and distributed data fusion.  相似文献   

2.
An approach is presented to data association (DA) problems for which measurements are independent from scan to scan. It is demonstrated that maximum likelihood (ML) estimation of target parameters may be efficiently implemented by an EM iterative scheme. The algorithm is applied to multitarget trajectory estimation of constant-velocity targets from passive (bearing-only) sensors  相似文献   

3.
A new multitarget detection technique using synthetic sampled aperture radar (SSAMAR) is presented. In contrast with the standard approach to multitarget detection, this technique may not require the use of phase shifting or tapering hardware. SSAMAR doubles the target pattern resolution, attenuates the sidelobes to about -27 dB, and significantly enhances the signal-to-noise ratio (SNR). Computer simulation is used to illustrate and validate this technique. Multitarget patterns for both standard and SSAMAR operations are provided  相似文献   

4.
Multitarget Bayes filtering via first-order multitarget moments   总被引:23,自引:0,他引:23  
The theoretically optimal approach to multisensor-multitarget detection, tracking, and identification is a suitable generalization of the recursive Bayes nonlinear filter. Even in single-target problems, this optimal filter is so computationally challenging that it must usually be approximated. Consequently, multitarget Bayes filtering will never be of practical interest without the development of drastic but principled approximation strategies. In single-target problems, the computationally fastest approximate filtering approach is the constant-gain Kalman filter. This filter propagates a first-order statistical moment - the posterior expectation - in the place of the posterior distribution. The purpose of this paper is to propose an analogous strategy for multitarget systems: propagation of a first-order statistical moment of the multitarget posterior. This moment, the probability hypothesis density (PHD), is the function whose integral in any region of state space is the expected number of targets in that region. We derive recursive Bayes filter equations for the PHD that account for multiple sensors, nonconstant probability of detection, Poisson false alarms, and appearance, spawning, and disappearance of targets. We also show that the PHD is a best-fit approximation of the multitarget posterior in an information-theoretic sense.  相似文献   

5.
Tracking in Clutter using IMM-IPDA?Based Algorithms   总被引:6,自引:0,他引:6  
We describe three single-scan probabilistic data association (PDA) based algorithms for tracking manoeuvering targets in clutter. These algorithms are derived by integrating the interacting multiple model (IMM) estimation algorithm with the PDA approximation. Each IMM model a posteriori state estimate probability density function (pdf) is approximated by a single Gaussian pdf. Each algorithm recursively updates the probability of target existence, in the manner of integrated PDA (IPDA). The probability of target existence is a track quality measure, which can be used for false track discrimination. The first algorithm presented, IMM-IPDA, is a single target tracking algorithm. Two multitarget tracking algorithms are also presented. The IMM-JIPDA algorithm calculates a posteriori probabilities of all measurement to track allocations, in the manner of the joint IPDA (JIPDA). The number of measurement to track allocations grows exponentially with the number of shared measurements and the number of tracks which share the measurements. Therefore, IMM-JIPDA can only be used in situations with a small number of crossing targets and low clutter measurement density. The linear multitarget IMM-IPDA (IMM-LMIPDA) is also a multitarget tracking algorithm, which achieves the multitarget capabilities by integrating linear multitarget (LM) method with IMM-IPDA. When updating one track using the LM method, the other tracks modulate the clutter measurement density and are subsequently ignored. In this fashion, LM achieves multitarget capabilities using the number of operations which are linear in the: number of measurements and the number of tracks, and can be used in complex scenarios, with dense clutter and a large number of targets.  相似文献   

6.
PHD filters of higher order in target number   总被引:14,自引:0,他引:14  
The multitarget recursive Bayes nonlinear filter is the theoretically optimal approach to multisensor-multitarget detection, tracking, and identification. For applications in which this filter is appropriate, it is likely to be tractable for only a small number of targets. In earlier papers we derived closed-form equations for an approximation of this filter based on propagation of a first-order multitarget moment called the probability hypothesis density (PHD). In a recent paper, Erdinc, Willett, and Bar-Shalom argued for the need for a PHD-type filter which remains first-order in the states of individual targets, but which is higher-order in target number. In this paper we show that this is indeed possible. We derive a closed-form cardinalized PHD (CPHD) filter, which propagates not only the PHD but also the entire probability distribution on target number.  相似文献   

7.
This paper studies the dynamic estimation problem for multitarget tracking. A novel gating strategy that is based on the measurement likelihood of the target state space is proposed to improve the overall effectiveness of the probability hypothesis density(PHD) filter. Firstly, a measurement-driven mechanism based on this gating technique is designed to classify the measurements. In this mechanism, only the measurements for the existing targets are considered in the update step of the existing targets while the measurements of newborn targets are used for exploring newborn targets. Secondly, the gating strategy enables the development of a heuristic state estimation algorithm when sequential Monte Carlo(SMC) implementation of the PHD filter is investigated, where the measurements are used to drive the particle clustering within the space gate.The resulting PHD filter can achieve a more robust and accurate estimation of the existing targets by reducing the interference from clutter. Moreover, the target birth intensity can be adaptive to detect newborn targets, which is in accordance with the birth measurements. Simulation results demonstrate the computational efficiency and tracking performance of the proposed algorithm.  相似文献   

8.
9.
A probability density function (pdf) based approach to the multitarget tracking problem is presented. The input data are obtained by measurements over time from a front-end detector. The desired output is the number of targets present and the parameters of each target. The same approach has previously been used for time delay detection and tracking problems and is adapted to this problem This approach is an alternative to the traditional approach of “association” and “tracking” on the measurements  相似文献   

10.
Multitarget tracking using the joint multitarget probability density   总被引:5,自引:0,他引:5  
This work addresses the problem of tracking multiple moving targets by recursively estimating the joint multitarget probability density (JMPD). Estimation of the JMPD is done in a Bayesian framework and provides a method for tracking multiple targets which allows nonlinear target motion and measurement to state coupling as well as nonGaussian target state densities. The JMPD technique simultaneously estimates both the target states and the number of targets in the surveillance region based on the set of measurements made. We give an implementation of the JMPD method based on particle filtering techniques and provide an adaptive sampling scheme which explicitly models the multitarget nature of the problem. We show that this implementation of the JMPD technique provides a natural way to track a collection of targets, is computationally tractable, and performs well under difficult conditions such as target crossing, convoy movement, and low measurement signal-to-noise ratio (SNR).  相似文献   

11.
An analysis of false alarm effects on tracking filter performance in multitarget track-while-scan radars, using variable correlation gates, is presented. The false alarms considered originate from noise, clutter, and crossing targets. The dimensions of the correlation gates are determined by filter prediction and measurement error variances. Track association is implanted either by means of a distance weighted average of the observations or by the nearest neighbor rule. State estimation is performed by means of a second-order discrete Kalman filter, taking into consideration random target maneuvers. Measurements are made in polar coordinates, while target dynamics are estimated in Cartesian coordinates, resulting in coupled linear filter equations. the effect of false alarms on the observation noise covariance matrix, and hence on state estimation errors, is analyzed. A computer simulation example, implementing radar target tracking with a variable correlation gate in the presence of false alarms, is discussed  相似文献   

12.
13.
The performance evaluation of multiple-hypothesis, multitarget tracking algorithm is presented. We are primarily interested in target-detection/track-initiation capabilities as measures of performance. Through Monte Carlo simulations, a multiple-hypothesis tracking algorithm was evaluated in terms of 1) probability of establishing a track from target returns and 2) false track density. A radar was chosen as the sensor, and a general multiple-hypothesis, multitarget tracking algorithm was used in the Monte Carlo simulations. The simulation results predict the probability of establishing a track from returns of a target as well as the false track density per scan volume per unit time. The effects of the target radar cross section and the radar power, measured through the mean signal-to-noise ratio (SNR) were studied, as were the effects of detection threshold and track quality threshold. Computational requirements were also investigated  相似文献   

14.
Rao-blackwellised particle filtering in random set multitarget tracking   总被引:1,自引:0,他引:1  
This article introduces a Rao-Blackwellised particle filtering (RBPF) approach in the finite set statistics (FISST) multitarget tracking framework. The RBPF approach is proposed in such a case, where each sensor is assumed to produce a sequence of detection reports each containing either one single-target measurement, or a "no detection" report. The tests cover two different measurement models: a linear-Gaussian measurement model, and a nonlinear model linearised in the extended Kalman filter (EKF) scheme. In the tests, Rao-Blackwellisation resulted in a significant reduction of the errors of the FISST estimators when compared with a previously proposed direct particle implementation. In addition, the RBPF approach was shown to be applicable in nonlinear bearings-only multitarget tracking.  相似文献   

15.
Track labeling and PHD filter for multitarget tracking   总被引:5,自引:0,他引:5  
Multiple target tracking requires data association that operates in conjunction with filtering. When multiple targets are closely spaced, the conventional approaches (as, e.g., MHT/assignment) may not give satisfactory results. This is mainly because of the difficulty in deciding what the number of targets is. Recently, the probability hypothesis density (PHD) filter has been proposed and particle filtering techniques have been developed to implement the PHD filter. In the particle PHD filter, the track labeling problem is not considered, i.e., the PHD is obtained only for a frame at a time, and it is very difficult to perform the multipeak extraction, particularly in high clutter environments. A track labeling method combined with the PHD approach, as well as considering the finite resolution, is proposed here for multitarget tracking, i.e., we keep a separate tracker for each target, use the PHD in the resolution cell to get the estimated number and locations of the targets at each time step, and then perform the track labeling ("peak-to-track" association), whose results can provide information for PHD peak extraction at the next time step. Besides, by keeping a separate tracker for each target, our approach provides more information than the standard particle PHD filter. For example, in group target tracking, if we are interested in the motion of a specific target, we can track this target, which is not possible for the standard particle PHD filter, since the standard particle PHD filter does not keep track labels. Using our approach, multitarget tracking can be performed with automatic track initiation, maintenance, spawning, merging, and termination  相似文献   

16.
The power selection of a search radar is best obtained in the framework of the overall detection probability concept. This concept is here applied to fluctuating target models for single- and multiple-scan detection. The approach combines the pulse train statistics over the detection interval to the mean target statistics over the search region and directly relates the overall detection probability POD to a single system parameter ?0, proportional to the transmitted power.  相似文献   

17.
The ordered-statistics (OS) constant false-alarm rate (CFAR) is relatively immune to the presence of interfering targets among the reference cells used to determine the average background. OS CFAR performance in a multitarget environment was previously studied by simulation. The author obtains analytic expressions for the added detection loss, assuming strong interfering targets. The real target is assumed to be a Rayleigh fluctuating target. Numerical examples are included  相似文献   

18.
The variable-structure multiple-model particle filtering approach for state estimation of road-constrained targets is addressed. The multiple models are designed to account for target maneuvers including "move-stop-move" and motion ambiguity at an intersection; the time-varying active model sets are adaptively selected based on target state and local terrain condition. The hybrid state space is partitioned into the mode subspace and the target subspace. The mode state is estimated based on random sampling; the target state as well as the relevant likelihood function associated with a mode sample sequence is approximated as Gaussian distribution, of which the conditional mean and covariance are deterministically computed using a nonlinear Kalman filter which accounts for road constraints in its update. The importance function for the sampling of the mode state approximates the optimal importance function under the same Gaussian assumption of the target state.  相似文献   

19.
Robust extended Kalman filter with input estimation for maneuver tracking   总被引:1,自引:1,他引:1  
This study investigates the problem of tracking a satellite performing unknown continuous maneuvers. A new method is proposed for estimating both the state and maneuver acceleration of the satellite. The estimation of the maneuver acceleration is obtained by the combination of an unbiased minimum-variance input and state estimation method and a low-pass filter. Then a threshold-based maneuver detection approach is developed to determinate the start and end time of the unknown maneuvers. During the maneuvering period, the estimation error of the maneuver acceleration is modeled as the sum of a fluctuation error and a sudden change error. A robust extended Kalman filter is developed for dealing with the acceleration estimate error and providing state estimation. Simulation results show that, compared with the Unbiased Minimum-variance Input and State Estimation (UMISE) method, the proposed method has the same position estimation accuracy, and the velocity estimation error is reduced by about 5 times during the maneuver period. Besides, the acceleration detection and estimation accuracy of the proposed method is much higher than that of the UMISE method.  相似文献   

20.
Three fast algorithms have been developed to solve the problem of data association in multitarget tracking in clutter. In the first algorithm, the problem of data association is identified as an exhaustive search problem in general. Subsequently, a mathematical model is proposed for the problem of data association in the joint probabilistic data association filter (JPDAF). Based on the model, a depth-first search (DFS) approach is developed for the fast generation of data association hypotheses and the computation of the conditional probabilities of the hypotheses in the JPDAF. When the density of targets is moderate, a second algorithm is developed to directly compute a posteriori probabilities in the JPDAF without generating the data association hypotheses. In the third algorithm, the effect of interference due to closely spaced targets is simplified. An approach to approximately compute the a posteriori probabilities in the JPDAF is developed. The computational complexity of the algorithms is analyzed in the worst case, as well as in the average case  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号