首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Tracking in Clutter using IMM-IPDA?Based Algorithms   总被引:6,自引:0,他引:6  
We describe three single-scan probabilistic data association (PDA) based algorithms for tracking manoeuvering targets in clutter. These algorithms are derived by integrating the interacting multiple model (IMM) estimation algorithm with the PDA approximation. Each IMM model a posteriori state estimate probability density function (pdf) is approximated by a single Gaussian pdf. Each algorithm recursively updates the probability of target existence, in the manner of integrated PDA (IPDA). The probability of target existence is a track quality measure, which can be used for false track discrimination. The first algorithm presented, IMM-IPDA, is a single target tracking algorithm. Two multitarget tracking algorithms are also presented. The IMM-JIPDA algorithm calculates a posteriori probabilities of all measurement to track allocations, in the manner of the joint IPDA (JIPDA). The number of measurement to track allocations grows exponentially with the number of shared measurements and the number of tracks which share the measurements. Therefore, IMM-JIPDA can only be used in situations with a small number of crossing targets and low clutter measurement density. The linear multitarget IMM-IPDA (IMM-LMIPDA) is also a multitarget tracking algorithm, which achieves the multitarget capabilities by integrating linear multitarget (LM) method with IMM-IPDA. When updating one track using the LM method, the other tracks modulate the clutter measurement density and are subsequently ignored. In this fashion, LM achieves multitarget capabilities using the number of operations which are linear in the: number of measurements and the number of tracks, and can be used in complex scenarios, with dense clutter and a large number of targets.  相似文献   

2.
This paper studies the dynamic estimation problem for multitarget tracking. A novel gating strategy that is based on the measurement likelihood of the target state space is proposed to improve the overall effectiveness of the probability hypothesis density(PHD) filter. Firstly, a measurement-driven mechanism based on this gating technique is designed to classify the measurements. In this mechanism, only the measurements for the existing targets are considered in the update step of the existing targets while the measurements of newborn targets are used for exploring newborn targets. Secondly, the gating strategy enables the development of a heuristic state estimation algorithm when sequential Monte Carlo(SMC) implementation of the PHD filter is investigated, where the measurements are used to drive the particle clustering within the space gate.The resulting PHD filter can achieve a more robust and accurate estimation of the existing targets by reducing the interference from clutter. Moreover, the target birth intensity can be adaptive to detect newborn targets, which is in accordance with the birth measurements. Simulation results demonstrate the computational efficiency and tracking performance of the proposed algorithm.  相似文献   

3.
Tracking multiple targets with uncertain target dynamics is a difficult problem, especially with nonlinear state and/or measurement equations. With multiple targets, representing the full posterior distribution over target states is not practical. The problem becomes even more complicated when the number of targets varies, in which case the dimensionality of the state space itself becomes a discrete random variable. The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment (the PHD) of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems with a varying number of targets. The integral of PHD in any region of the state space gives the expected number of targets in that region. With maneuvering targets, detecting and tracking the changes in the target motion model also become important. The target dynamic model uncertainty can be resolved by assuming multiple models for possible motion modes and then combining the mode-dependent estimates in a manner similar to the one used in the interacting multiple model (IMM) estimator. This paper propose a multiple-model implementation of the PHD filter, which approximates the PHD by a set of weighted random samples propagated over time using sequential Monte Carlo (SMC) methods. The resulting filter can handle nonlinear, non-Gaussian dynamics with uncertain model parameters in multisensor-multitarget tracking scenarios. Simulation results are presented to show the effectiveness of the proposed filter over single-model PHD filters.  相似文献   

4.
水下多目标跟踪是水声信号处理领域研究的热点和难点问题。高斯混合概率假设密度(Gaussian mixture probability hypothesis density, GM-PHD)滤波器以其高效的计算效率为解决水下多目标跟踪问题提供了保证。然而,GM-PHD滤波器在跟踪目标时需要先验已知新生目标的强度,否则其性能会出现严重退化。针对该问题,提出一种滑动窗两步初始化高斯混合概率假设密度(sliding window two step initialization GM-PHD, SWTSI-GMPHD)滤波器。将提出的滑动窗两步初始化方法嵌入GM-PHD滤波器,利用滑动窗两步初始化方法估计新生目标强度,减少杂波干扰导致跟踪结果中出现的虚假目标。仿真实验表明,在杂波密集环境下,相较于其他跟踪方法,提出方法将跟踪精度提高69.84%,52.62%和41.05%。  相似文献   

5.
密集杂波环境下的数据关联快速算法   总被引:5,自引:0,他引:5  
郭晶  罗鹏飞  汪浩 《航空学报》1998,19(3):305-309
基于联合概率数据互联(JPDA)的思想,提出了一种新的数据关联快速算法(Fast Al-gorithm for Data Association,简称FAFDA算法).该方法不需象在最优JPDA算法中那样生成所有可能的联合互联假设,因而具有计算量小,易于工程实现的特点。仿真结果表明,与最优JPDA算法相比,FAFDA算法的跟踪性能令人满意,并且在密集杂波环境下可实时、有效地跟踪100批次以上的目标。  相似文献   

6.
Track labeling and PHD filter for multitarget tracking   总被引:5,自引:0,他引:5  
Multiple target tracking requires data association that operates in conjunction with filtering. When multiple targets are closely spaced, the conventional approaches (as, e.g., MHT/assignment) may not give satisfactory results. This is mainly because of the difficulty in deciding what the number of targets is. Recently, the probability hypothesis density (PHD) filter has been proposed and particle filtering techniques have been developed to implement the PHD filter. In the particle PHD filter, the track labeling problem is not considered, i.e., the PHD is obtained only for a frame at a time, and it is very difficult to perform the multipeak extraction, particularly in high clutter environments. A track labeling method combined with the PHD approach, as well as considering the finite resolution, is proposed here for multitarget tracking, i.e., we keep a separate tracker for each target, use the PHD in the resolution cell to get the estimated number and locations of the targets at each time step, and then perform the track labeling ("peak-to-track" association), whose results can provide information for PHD peak extraction at the next time step. Besides, by keeping a separate tracker for each target, our approach provides more information than the standard particle PHD filter. For example, in group target tracking, if we are interested in the motion of a specific target, we can track this target, which is not possible for the standard particle PHD filter, since the standard particle PHD filter does not keep track labels. Using our approach, multitarget tracking can be performed with automatic track initiation, maintenance, spawning, merging, and termination  相似文献   

7.
The middle pulse repetition frequency(MPRF)and high pulse repetition frequency(HPRF)modes are widely adopted in airborne pulse Doppler(PD)radar systems,which results in the problem that the range measurement of targets is ambiguous.The existing data processing based range ambiguity resolving methods work well on the condition that the signal-to-noise ratio(SNR)is high enough.In this paper,a multiple model particle flter(MMPF)based track-beforedetect(TBD)method is proposed to address the problem of target detection and tracking with range ambiguous radar in low-SNR environment.By introducing a discrete variable that denotes whether a target is present or not and the discrete pulse interval number(PIN)as components of the target state vector,and modeling the incremental variable of the PIN as a three-state Markov chain,the proposed algorithm converts the problem of range ambiguity resolving into a hybrid state fltering problem.At last,the hybrid fltering problem is implemented by a MMPF-based TBD method in the Bayesian framework.Simulation results demonstrate that the proposed Bayesian approach can estimate target state as well as the PIN simultaneously,and succeeds in detecting and tracking weak targets with the range ambiguous radar.Simulation results also show that the performance of the proposed method is superior to that of the multiple hypothesis(MH)method in low-SNR environment.  相似文献   

8.
高斯混合概率假设密度(GM-PHD)滤波是一种基于随机有限集理论的次优贝叶斯多目标跟踪方法,本文研究了该算法在扫描型光学传感器像平面的多目标跟踪问题.针对典型的锥扫模式和推扫模式,根据其扫描特性建立目标的运动模型和测量模型.介绍高斯混合概率假设密度滤波的基本原理.针对原算法在强杂波环境中的低效率问题,借鉴传统多目标跟踪...  相似文献   

9.
A method for multitarget tracking and initiating tracking in a cluttered environment is proposed. The algorithm uses a sliding window of length uT (T is the sampling time) to keep the measurement sequence at time k. Instead of solving a large problem, the entire set of targets and measurements is divided into several clusters so that a number of smaller problems are solved independently. When a set of measurements is received, a new set of data-association hypotheses is formed for all the measurements lying in the validation gates within each cluster from time K-u+1 to K. The probability of each track history is computed, and, choosing the largest of these histories, the target measurement is updated with an adaptive state estimator. A covariance-matching technique is used to improve the accuracy of the adaptive state estimator. In several examples, the algorithm successfully tracks targets over a wide range of conditions  相似文献   

10.
We present the development of a multisensor fusion algorithm using multidimensional data association for multitarget tracking. The work is motivated by a large scale surveillance problem, where observations from multiple asynchronous sensors with time-varying sampling intervals (electronically scanned array (ESA) radars) are used for centralized fusion. The combination of multisensor fusion with multidimensional assignment is done so as to maximize the “time-depth” in addition to “sensor-width” for the number S of lists handled by the assignment algorithm. The standard procedure, which associates measurements from the most recently arrived S-1 frames to established tracks, can have, in the case of S sensors, a time-depth of zero. A new technique, which guarantees maximum effectiveness for an S-dimensional data association (S⩾3), i.e., maximum time-depth (S-1) for each sensor without sacrificing the fusion across sensors, is presented. Using a sliding window technique (of length S), the estimates are updated after each frame of measurements. The algorithm provides a systematic approach to automatic track formation, maintenance, and termination for multitarget tracking using multisensor fusion with multidimensional assignment for data association. Estimation results are presented for simulated data for a large scale air-to-ground target tracking problem  相似文献   

11.
This work deals with the problem of multiple target tracking, from the measurements made on a field of passive sonars activated by an active sonar (multistatic network). The difficulties encountered then are of two kinds: each sensor alone does not provide full observability of a target, and multiple, possibly maneuvering targets moving in a cluttered environment must be dealt with. The algorithm presented here is based on a discrete Markovian modelization of the targets evolution in time. It starts with a fusion of the detections obtained at each measurement time. Tracking and target motion analysis (TMA) are next achieved thanks to dynamic programming (DP). This approach leads to multiple and maneuvering target tracking, with few assumptions; for instance, the use of deterministic target state models are avoided. Simulation results are presented and discussed.  相似文献   

12.
13.
PHD filters of higher order in target number   总被引:14,自引:0,他引:14  
The multitarget recursive Bayes nonlinear filter is the theoretically optimal approach to multisensor-multitarget detection, tracking, and identification. For applications in which this filter is appropriate, it is likely to be tractable for only a small number of targets. In earlier papers we derived closed-form equations for an approximation of this filter based on propagation of a first-order multitarget moment called the probability hypothesis density (PHD). In a recent paper, Erdinc, Willett, and Bar-Shalom argued for the need for a PHD-type filter which remains first-order in the states of individual targets, but which is higher-order in target number. In this paper we show that this is indeed possible. We derive a closed-form cardinalized PHD (CPHD) filter, which propagates not only the PHD but also the entire probability distribution on target number.  相似文献   

14.
A probability density function (pdf) based approach to the multitarget tracking problem is presented. The input data are obtained by measurements over time from a front-end detector. The desired output is the number of targets present and the parameters of each target. The same approach has previously been used for time delay detection and tracking problems and is adapted to this problem This approach is an alternative to the traditional approach of “association” and “tracking” on the measurements  相似文献   

15.
罗少华  徐晖  徐洋  安玮 《航空学报》2012,33(7):1296-1304
基于序列蒙特卡罗方法的经典多模概率假设密度滤波方法及其各种衍生方法,在预测过程中依据多个并行的状态转移模型,通过将大量粒子散布到下一时刻目标所有可能出现的状态空间实现目标状态的捕获,造成计算量大、目标跟踪精度差。为此,提出一种改进的多模粒子概率假设密度机动目标跟踪方法。该方法利用最新量测信息估计目标运动模型概率及模型参数,并将估计得到的目标模型应用到粒子概率假设密度滤波方法的预测过程中生成预测粒子,从而将大部分粒子聚合在目标最可能出现的状态空间邻域中,实现粒子的有效利用。数值仿真表明,所提方法不仅显著地减少了目标丢失个数,而且提高了目标跟踪精度。  相似文献   

16.
《中国航空学报》2023,36(4):423-441
The low-angle tracking in multipath interference is a challenging problem for the Very High Frequency (VHF) radar. The colocated Multi-Input Multi-Output (MIMO) technique can remedy such a defect. In this paper, a Joint Beam-Target Assignment and Power Allocation (JBTAPA) strategy is proposed for the VHF-MIMO radar network tracking low-angle targets. The core of the JBTAPA strategy is to improve the worst tracking accuracy among multiple targets by assigning appropriate beams to targets and allocating the power resource in each beam using the feedback information in the tracking cycle. Taking into account the transmit multipath and receive multipath, we derive the Cramér-Rao Lower Bound (CRLB) on angle estimate, which is then incorporated in the Predicted Conditional CRLB (PC-CRLB). A more accurate and consistent lower bound is provided as the optimization metric since the PC-CRLB is based on the most recently realized measurements. A two-stage-based technique is proposed to solve the JBTAPA problem, which is originally NP-hard. Simulation results verify the effectiveness and efficiency of the proposed method. The results also imply that the target reflectivity plays one of the important roles in resource allocation.  相似文献   

17.
A previously presented probability density function (pdf) multitarget tracker is extended to a more complex and difficult problem. The input data is bearing measurements from multiple sensors over time, which includes clutter (false alarms) and true measurements (from detected targets) with errors. Targets may be missed. The output is the real-time determination of the number of targets present and their geographic x,y location. The implementation is the recursive numerical computation of the discrete pdf of each target and is derived from the conceptual joint pdf of all targets  相似文献   

18.
In this work we present a new track segment association technique to improve track continuity in large-scale target tracking problems where track breakages are common. A representative airborne early warning (AEW) system scenario, which is a challenging environment due to highly maneuvering targets, close target formations, large measurement errors, long sampling intervals, and low detection probabilities, provides the motivation for the new technique. Previously, a tracker using the interacting multiple model (IMM) estimator combined with an assignment algorithm was shown to be more reliable than a conventional Kalman filter based approach in tracking similar targets but it still yielded track breakages due to the difficult environment. In order to combine the broken track segments and improve track continuity, a new track segment association algorithm using a discrete optimization approach is presented. Simulation results show that track segment association yields significant improvements in mean track life as well as in position, speed, and course rms errors. Also presented is a modified one-point initialization technique with range rate measurements, which are typically ignored by other initialization techniques, and a fine-step IMM estimator, which improves performance in the presence of long revisit intervals. Another aspect that is investigated is the benefit of "deep" (multiframe or N-dimensional, with N > 2) association, which is shown to yield significant benefit in reducing the number of false tracks.  相似文献   

19.
梁栋  高赛  孙涵  刘宁钟 《航空学报》2020,41(9):323733-323733
针对无人机与相机快速相对运动造成的运动模糊问题,以及小型无人机外观信息缺失和背景复杂造成漏警和虚警问题,提出了一种新的无人机检测-跟踪方法。针对成像尺寸小于32像素×32像素的无人机目标,提出改进的多层特征金字塔的分类和目标框回归器作为目标检测器,克服漏警。利用检测结果初始化基于核相关滤波的目标跟踪器,并持续修正跟踪结果,跟踪结果为剔除检测器虚警提供依据。在跟踪过程中,引入对观测场景纹理自适应的相机运动补偿策略实现目标重定位。多场景下的实验结果表明:提出的方法在对高速运动小目标的检测和跟踪指标上显著优于传统方法,且运动补偿机制的引入进一步增强了方法在极端复杂场景下的鲁棒性。  相似文献   

20.
在机动多目标跟踪问题中,目标数未知或随时间而变化,概率假设密度(PHD)滤波可以在每一时间步估计多目标状态和目标数,但单模型方法不能给出精确的估计。提出了一种交互多模型PHD滤波方法,建立多模型描述多目标运动方式,利用PHD滤波结合多模型跟踪目标运动轨迹。同时,给出了多传感器交互多模型PHD滤波方法,以提高目标跟踪精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号