首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The Near-Infrared Spectrometer (NIS) instrument on the Near-Earth Asteroid Rendezvous (NEAR) spacecraft is designed to map spectral properties of the mission target, the S-type asteroid 433 Eros, at near-infrared wavelengths diagnostic of the composition of minerals forming S asteroids. NIS is a grating spectrometer, in which light is directed by a dichroic beam-splitter onto a 32-element Ge detector (center wavelengths, 816–1486 nm) and a 32-element InGaAs detector (center wavelengths, 1371–2708 nm). Each detector reports a 32-channel spectrum at 12-bit quantization. The field-of-view is selectable using slits with dimensions calibrated at 0.37° × 0.76° (narrow slit) and 0.74° × 0.76° (wide slit). A shutter can be closed for dark current measurements. For the Ge detector, there is an option to command a 10x boost in gain. A scan mirror rotates the field-of-view over a 140° range, and a diffuse gold radiance calibration target is viewable at the sunward edge of the field of regard. Spectra are measured once per second, and up to 16 can be summed onboard. Hyperspectral image cubes are built up by a combination of down-track spacecraft motion and cross-track scanning of the mirror. Instrument software allows execution of data acquisition macros, which include selection of the slit width, number of spectra to sum, gain, mirror scanning, and an option to interleave dark spectra with the shutter closed among asteroid observations. The instrument was extensively characterized by on-ground calibration, and a comprehensive program of in-flight calibration was begun shortly after launch. NIS observations of Eros will largely be coordinated with multicolor imaging from the Multispectral Imager (MSI). NIS will begin observing Eros during approach to the asteroid, and the instrument will map Eros at successively higher spatial resolutions as NEAR's orbit around Eros is lowered incrementally to 25 km altitude. Ultimate products of the investigation will include composition maps of the entire illuminated surface of Eros at spatial resolutions as high as 300 m.  相似文献   

2.
The aurorae are the result of collisions with the atmosphere of energetic particles that have their origin in the solar wind, and reach the atmosphere after having undergone varying degrees of acceleration and redistribution within the Earth's magnetosphere. The global scale phenomenon represented by the aurorae therefore contains considerable information concerning the solar-terrestrial connection. For example, by correctly measuring specific auroral emissions, and with the aid of comprehensive models of the region, we can infer the total energy flux entering the atmosphere and the average energy of the particles causing these emissions. Furthermore, from these auroral emissions we can determine the ionospheric conductances that are part of the closing of the magnetospheric currents through the ionosphere, and from these we can in turn obtain the electric potentials and convective patterns that are an essential element to our understanding of the global magnetosphere-ionosphere-thermosphere-mesosphere. Simultaneously acquired images of the auroral oval and polar cap not only yield the temporal and spatial morphology from which we can infer activity indices, but in conjunction with simultaneous measurements made on spacecraft at other locations within the magnetosphere, allow us to map the various parts of the oval back to their source regions in the magnetosphere. This paper describes the Ultraviolet Imager for the Global Geospace Sciences portion of the International Solar-Terrestrial Physics program. The instrument operates in the far ultraviolet (FUV) and is capable of imaging the auroral oval regardless of whether it is sunlit or in darkness. The instrument has an 8° circular field of view and is located on a despun platform which permits simultaneous imaging of the entire oval for at least 9 hours of every 18 hour orbit. The three mirror, unobscured aperture, optical system (f/2.9) provides excellent imaging over this full field of view, yielding a per pixel angular resolution of 0.6 milliradians. Its FUV filters have been designed to allow accurate spectral separation of the features of interest, thus allowing quantitative interpretation of the images to provide the parameters mentioned above. The system has been designed to provide ten orders of magnitude blocking against longer wavelength (primarily visible) scattered sunlight, thus allowing the first imaging of key, spectrally resolved, FUV diagnostic features in the fully sunlit midday aurorae. The intensified-CCD detector has a nominal frame rate of 37 s, and the fast optical system has a noise equivalent signal within one frame of 10R. The instantaneous dynamic range is >1000 and can be positioned within an overall gain range of 104, allowing measurement of both the very weak polar cap emissions and the very bright aurora. The optical surfaces have been designed to be sufficiently smooth to permit this dynamic range to be utilized without the scattering of light from bright features into the weaker features. Finally, the data product can only be as good as the degree to which the instrument performance is characterized and calibrated. In the VUV, calibration of an an imager intended for quantitative studies is a task requiring some pioneering methods, but it is now possible to calibrate such an instrument over its focal plane to an accuracy of ±10%. In summary, very recent advances in optical, filter and detector technology have been exploited to produce an auroral imager to meet the ISTP objectives.  相似文献   

3.
A suite of three optical instruments has been developed to observe Comet 9P/Tempel 1, the impact of a dedicated impactor spacecraft, and the resulting crater formation for the Deep Impact mission. The high-resolution instrument (HRI) consists of an f/35 telescope with 10.5 m focal length, and a combined filtered CCD camera and IR spectrometer. The medium-resolution instrument (MRI) consists of an f/17.5 telescope with a 2.1 m focal length feeding a filtered CCD camera. The HRI and MRI are mounted on an instrument platform on the flyby spacecraft, along with the spacecraft star trackers and inertial reference unit. The third instrument is a simple unfiltered CCD camera with the same telescope as MRI, mounted within the impactor spacecraft. All three instruments use a Fairchild split-frame-transfer CCD with 1,024× 1,024 active pixels. The IR spectrometer is a two-prism (CaF2 and ZnSe) imaging spectrometer imaged on a Rockwell HAWAII-1R HgCdTe MWIR array. The CCDs and IR FPA are read out and digitized to 14 bits by a set of dedicated instrument electronics, one set per instrument. Each electronics box is controlled by a radiation-hard TSC695F microprocessor. Software running on the microprocessor executes imaging commands from a sequence engine on the spacecraft. Commands and telemetry are transmitted via a MIL-STD-1553 interface, while image data are transmitted to the spacecraft via a low-voltage differential signaling (LVDS) interface standard. The instruments are used as the science instruments and are used for the optical navigation of both spacecraft. This paper presents an overview of the instrument suite designs, functionality, calibration and operational considerations.  相似文献   

4.
The Near Earth Asteroid Rendezvous (NEAR) mission launched successfully on February 17, 1996 aboard a Delta II-7925. NEAR will be the first mission to orbit an asteroid and will make the first comprehensive scientific measurements of an asteroid's surface composition, geology, physical properties, and internal structure. It will orbit the unusually large near-Earth asteroid 433 Eros for about one year, at a minimum altitude of about 15 km from the surface. NEAR will also make the first reconnaissance of a C-type asteroid during its flyby of the unusual main belt asteroid 253 Mathilde. The NEAR instrument payload is: a multispectral imager (MSI), a near infrared spectrometer (NIS), an X-ray/gamma ray spectrometer (XRS/GRS), a magnetometer (MAG), and a laser rangefinder (NLR), while a radio science investigation (RS) uses the coherent X-band transponder. NEAR will improve our understanding of planetary formation processes in the early solar system and clarify the relationships between asteroids and meteorites. The Mathilde flyby will occur on June 27, 1997, and the Eros rendezvous will take place during February 1999 through February 2000.  相似文献   

5.
Heeres  K. J.  Holland  D. B.  Cheng  A. F. 《Space Science Reviews》1997,82(1-2):283-308
The NEAR (Near Earth Asteroid Rendezvous) Science Data Center (SDC) serves as the central site for common data processing activities needed by the NEAR science teams in particular and the scientific community in general. The SDC provides instrument and spacecraft data to the science teams from around the world and redistributes science products produced by those teams, all the science teams to focus on analysis. This data and the accompanying documentation are available at 'http://sd-www.jhuapl.edu/NEAR/'. In addition the SDC is responsible for archiving spacecraft, instrument, and science data to the Planetary Data System (PDS).  相似文献   

6.
Lohr  D. A.  Zanetti  L. J.  Anderson  B. J.  Potemra  T. A.  Hayes  J. R.  Gold  R. E.  Henshaw  R. M.  Mobley  F. F.  Holland  D. B.  Acuña  M. H.  Scheifele  J. L. 《Space Science Reviews》1997,82(1-2):255-281
The primary objective of the investigation is the search for a body-wide magnetic field of the near Earth asteroid Eros. The Near Earth Asteroid Rendezvous (NEAR) 3-axis fluxgate magnetometer includes a sensor mounted on the high-gain antenna feed structure. The NEAR Magnetic Facility Instrument (MFI) is a joint hardware effort between GSFC and APL. The design and magnetics approach achieved by the NEAR MFI effort entailed low-cost, up-front attention to engineering solutions which did not impact the schedule. The goal of the magnetometer is reliable magnetic field measurements within 5 nT, which necessitates the use of an extensive spacecraft magnetic interference model but is achievable with the full year's orbital data set. Such a goal has been shown viable with recent in-flight calibration data and comparisons to the WIND magnetometer data. The NEAR MFI effort has succeeded in providing magnetic field measurements for the first flight in NASA's Discovery line.  相似文献   

7.
The LOng-Range Reconnaissance Imager (LORRI) is the high-resolution imaging instrument for the New Horizons mission to Pluto, its giant satellite Charon, its small moons Nix and Hydra, and the Kuiper Belt, which is the vast region of icy bodies extending roughly from Neptune’s orbit out to 50 astronomical units (AU). New Horizons launched on January 19, 2006, as the inaugural mission in NASA’s New Frontiers program. LORRI is a narrow-angle (field of view=0.29°), high-resolution (4.95 μrad pixels), Ritchey-Chrétien telescope with a 20.8-cm diameter primary mirror, a focal length of 263 cm, and a three-lens, field-flattening assembly. A 1,024×1,024 pixel (optically active region), thinned, backside-illuminated charge-coupled device (CCD) detector is used in the focal plane unit and is operated in frame-transfer mode. LORRI provides panchromatic imaging over a bandpass that extends approximately from 350 nm to 850 nm. LORRI operates in an extreme thermal environment, situated inside the warm spacecraft with a large, open aperture viewing cold space. LORRI has a silicon carbide optical system, designed to maintain focus over the operating temperature range without a focus adjustment mechanism. Moreover, the spacecraft is thruster-stabilized without reaction wheels, placing stringent limits on the available exposure time and the optical throughput needed to satisfy the measurement requirements.  相似文献   

8.
深空自主光学导航小行星筛选与规划方法研究   总被引:2,自引:0,他引:2  
 深空探测器的自主光学导航是深空探测器自主的关键技术之一,而导航路标——小行星的选择与拍照序列的规划是深空探测自主导航的重要内容。基于探测Ivar小行星的设计方案,在导航小行星筛选方面,提出了基于小行星可见星等、距离、相对速度以及视线夹角的筛选准则,并利用综合评估的方式进行导航小行星的筛选;拍照序列规划方面,提出差额筛选的策略优化导航性价比,并利用改进的遗传算法进行规划。数学仿真结果表明,该方法能够有效地进行小行星的选择与拍照序列的规划。  相似文献   

9.
Overview of the New Horizons Science Payload   总被引:2,自引:0,他引:2  
The New Horizons mission was launched on 2006 January 19, and the spacecraft is heading for a flyby encounter with the Pluto system in the summer of 2015. The challenges associated with sending a spacecraft to Pluto in less than 10 years and performing an ambitious suite of scientific investigations at such large heliocentric distances (>32 AU) are formidable and required the development of lightweight, low power, and highly sensitive instruments. This paper provides an overview of the New Horizons science payload, which is comprised of seven instruments. Alice provides moderate resolution (~3–10 Å FWHM), spatially resolved ultraviolet (~465–1880 Å) spectroscopy, and includes the ability to perform stellar and solar occultation measurements. The Ralph instrument has two components: the Multicolor Visible Imaging Camera (MVIC), which performs panchromatic (400–975 nm) and color imaging in four spectral bands (Blue, Red, CH4, and NIR) at a moderate spatial resolution of 20 μrad/pixel, and the Linear Etalon Imaging Spectral Array (LEISA), which provides spatially resolved (62 μrad/pixel), near-infrared (1.25–2.5 μm), moderate resolution (λ/δ λ~240–550) spectroscopic mapping capabilities. The Radio Experiment (REX) is a component of the New Horizons telecommunications system that provides both radio (X-band) solar occultation and radiometry capabilities. The Long Range Reconnaissance Imager (LORRI) provides high sensitivity (V<18), high spatial resolution (5 μrad/pixel) panchromatic optical (350–850 nm) imaging capabilities that serve both scientific and optical navigation requirements. The Solar Wind at Pluto (SWAP) instrument measures the density and speed of solar wind particles with a resolution ΔE/E<0.4 for energies between 25 eV and 7.5 keV. The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) measures energetic particles (protons and CNO ions) in 12 energy channels spanning 1–1000 keV. Finally, an instrument designed and built by students, the Venetia Burney Student Dust Counter (VB-SDC), uses polarized polyvinylidene fluoride panels to record dust particle impacts during the cruise phases of the mission.  相似文献   

10.
The magnetometer on the POLAR Spacecraft is a high precision instrument designed to measure the magnetic fields at both high and low altitudes in the polar magnetosphere in 3 ranges of 700, 5700, and 47000 nT. This instrument will be used to investigate the behavior of fieldaligned current systems and the role they play in the acceleration of particles, and it will be used to study the dynamic fields in the polar cusp, magnetosphere, and magnetosheath. It will measure the coupling between the shocked magnetosheath plasma and the near polar cusp magnetosphere where much of the solar wind magnetosphere coupling is thought to take place. Moreover, it will provide measurements critical to the interpretation of data from other instruments. The instrument design has been influenced by the needs of the other investigations for immediately useable magnetic field data and high rate (100+vectors s–1) data distributed on the spacecraft. Data to the ground includes measurements at 10 vectors per second over the entire orbit plus snapshots of 100 vectors per second data. The design provides a fully redundant instrument with enhanced measurement capabilities that can be used when available spacecraft power permits.  相似文献   

11.
Green  J.L.  Reinisch  B.W. 《Space Science Reviews》2003,109(1-4):183-210
The Radio Plasma Imager (RPI) on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) spacecraft was designed as a long-range magnetospheric radio sounder, relaxation sounder, and a passive plasma wave instrument. The RPI is a highly flexible instrument that can be programmed to perform these types of measurements at times when IMAGE is located in key regions of the magnetosphere. RPI is the first radio sounder ever flown to large radial distances into the magnetosphere. The long-range sounder echoes from RPI allow remote sensing of a variety of plasmas structures and boundaries in the magnetosphere. A profile inversion technique for RPI echo traces has been developed and provides a method for determining the density distribution of the plasma from either direct or field-aligned echoes. This technique has enabled the determination of the evolving density structure of the polar cap and the plasmasphere under a variety of geomagnetic conditions. New results from RPI show that the plasmasphere refills in slightly greater than a day at L values of 2.8 and that ion heating is probably playing a major role in the overall density distribution along the field-line. In addition, RPI's plasma resonance observations at large radial distances over the polar cap provided in situ measurements of the plasma density with an accuracy of a few percent. For the first time in the magnetosphere, RPI has also observed the plasma D resonances. RPI's long antennas and its very low noise receivers provide excellent observations in the passive receive-only mode when the instrument measures the thermal plasma noise as well as natural emissions such as the continuum radiation and auroral kilometric radiation (AKR). Recent passive measurements from RPI have been compared extensively with images from the Extreme Ultraviolet (EUV) imager on IMAGE resulting in a number of new discoveries. For instance, these combined observations show that kilometric continuum can be generated at the plasmapause from sources in or very near the magnetic equator, within a bite-out region of the plasmasphere. The process by which plasmaspheric bite-out structures are produced is not completely understood at this time. Finally, RPI has been used to successfully test the feasibility of magnetospheric tomography. During perigee passages of the Wind spacecraft, RPI radio transmissions at one and two frequencies have been observed by the Waves instrument. The received electric field vector was observed to rotate with time due to the changing density of plasma, and thus Faraday rotation was measured. Many future multi-spacecraft missions propose to use Faraday rotation to obtain global density pictures of the magnetosphere.  相似文献   

12.
Far ultraviolet imaging from the IMAGE spacecraft. 2. Wideband FUV imaging   总被引:3,自引:0,他引:3  
Mende  S.B.  Heetderks  H.  Frey  H.U.  Lampton  M.  Geller  S.P.  Abiad  R.  Siegmund  O.H.W.  Tremsin  A.S.  Spann  J.  Dougani  H.  Fuselier  S.A.  Magoncelli  A.L.  Bumala  M.B.  Murphree  S.  Trondsen  T. 《Space Science Reviews》2000,91(1-2):271-285
The Far Ultraviolet Wideband Imaging Camera (WIC) complements the magnetospheric images taken by the IMAGE satellite instruments with simultaneous global maps of the terrestrial aurora. Thus, a primary requirement of WIC is to image the total intensity of the aurora in wavelength regions most representative of the auroral source and least contaminated by dayglow, have sufficient field of view to cover the entire polar region from spacecraft apogee and have resolution that is sufficient to resolve auroras on a scale of 1 to 2 latitude degrees. The instrument is sensitive in the spectral region from 140–190 nm. The WIC is mounted on the rotating IMAGE spacecraft viewing radially outward and has a field of view of 17° in the direction parallel to the spacecraft spin axis. Its field of view is 30° in the direction perpendicular to the spin axis, although only a 17°×17° image of the Earth is recorded. The optics was an all-reflective, inverted Cassegrain Burch camera using concentric optics with a small convex primary and a large concave secondary mirror. The mirrors were coated by a special multi-layer coating, which has low reflectivity in the visible and near UV region. The detector consists of a MCP-intensified CCD. The MCP is curved to accommodate the focal surface of the concentric optics. The phosphor of the image intensifier is deposited on a concave fiberoptic window, which is then coupled to the CCD with a fiberoptic taper. The camera head operates in a fast frame transfer mode with the CCD being read approximately 30 full frames (512×256 pixel) per second with an exposure time of 0.033 s. The image motion due to the satellite spin is minimal during such a short exposure. Each image is electronically distortion corrected using the look up table scheme. An offset is added to each memory address that is proportional to the image shift due to satellite rotation, and the charge signal is digitally summed in memory. On orbit, approximately 300 frames will be added to produce one WIC image in memory. The advantage of the electronic motion compensation and distortion correction is that it is extremely flexible, permitting several kinds of corrections including motions parallel and perpendicular to the predicted axis of rotation. The instrument was calibrated by applying ultraviolet light through a vacuum monochromator and measuring the absolute responsivity of the instrument. To obtain the data for the distortion look up table, the camera was turned through various angles and the input angles corresponding to a pixel matrix were recorded. It was found that the spectral response peaked at 150 nm and fell off in either direction. The equivalent aperture of the camera, including mirror reflectivities and effective photocathode quantum efficiency, is about 0.04 cm2. Thus, a 100 Rayleigh aurora is expected to produce 23 equivalent counts per pixel per 10 s exposure at the peak of instrument response.  相似文献   

13.
Cole  T. D.  Boies  M. T.  El-Dinary  A. S.  Cheng  A.  Zuber  M. T.  Smith  D. E. 《Space Science Reviews》1997,82(1-2):217-253
In 1999 after a 3-year transit, the Near-Earth Asteroid Rendezvous (NEAR) spacecraft will enter a low-altitude orbit around the asteroid, 433 Eros. Onboard the spacecraft, five facility instruments will operate continuously during the planned one-year orbit at Eros. One of these instruments, the NEAR Laser Rangefinder (NLR), will provide sufficiently high resolution and accurate topographical profiles that when combined with gravity estimates will result with quantitative insight into the internal structure, rotational dynamics, and evolution of Eros. Developed at the Applied Physics Laboratory (APL), the NLR instrument is a direct-detection laser radar using a bistatic arrangement. The transmitter is a gallium arsenide (GaAs) diode-pumped Cr:Nd:YAG (1.064-µm) laser and the separate receiver uses an extended infrared performance avalanche-photodiode (APD) detector with 7.62-cm clear aperture Dall–Kirkham telescope. The lithium-niobate (LiNbO3) Q-switched transmitter emits 15-ns pulses at 15.3 mJ pulse-1, permitting reliable NLR operation beyond the required 50-km altitude. With orbital velocity of 5 m s-1 and a sampling rate of 1 Hz, the NLR spot size provides high spatial sampling of Eros along the orbital direction. Cross-track sampling, determined by the specific orbital geometry with Eros, defines the resolution of the global topographic model; this spacing is expected to be <500 m on the asteroid's surface. Combining the various sources of range errors results with an overall range accuracy of 6 m with respect to Eros' center-of-mass. The NLR instrument design, perfomance, and validation testing is decribed. In addition, data derived from the NLR are discussed. Using altimetry data from the NLR, we expect to estimate the volume of 433 Eros to 0.01% and its mass to 0.0001% accuracies; significantly greater accuracies than ever possible before NEAR.  相似文献   

14.
Current observational data base on the motion of comets and asteroids is reviewed. Particular attention is paid to the absolute and relative abundances of different dynamical types of objects, and to the time intervals between their first and last observations. The latter quantity, ranging from two days to two milliennia for individual objects, is the dominant measure of the accuracy of the orbit determination. Distribution of the tracking times of comets (distinguished by dynamical age: new, long-period, Halley type, Jupiter family) and asteroids (distinguished by stability: Apollos, Amors, main-belt asteroids, outer librators, outer unstable objects) are reconstructed. The peculiar shapes of individual distributions can be explained by the complex mechanisms of discoveries, rediscoveries, orbit computations, follow-up observations and backward identifications. A comparison is also made with the dynamical data base on meteoroids, as regards the accuracy of their orbits.The cumulative tracking times (170000 yr for all 7600 objects with known orbits taken together) are compared with the lifetimes and occurrence rates of different events of evolutionary significance. Only in the case of short-period comets the evolution is rapid enough to render observable a variety of important changes, ranging from drastic transformations of orbits to disruption or total outgassing. For asteroids, only minor cratering collisions which do not result in detectable changes of their orbits are covered by the whole observational history.Expected future improvements of observing and data-handling techniques are outlined. With these in view, the size and character of the data to become available by the end of this century are predicted. Dynamical types of objects, which are currently known in only one or a few examples, are pointed out. Apparently, other types of rare occurrence and short survival time still escape detection. A list of easiest targets of short-duration spacecraft missions is presented.The deficiencies of current statistics due to observational selection; the broad variety of regimes of motion occupied by widely differing proportional representations of the known objects; and demands for suitable targets of future spacecraft missions make it highly desirable to maintain the present rapid rate of augmentation of the data base for the years to come.Recent passages of two comets — 1983d IRAS-Araki-Alcock and 1983e Sugano-Saigusa-Fujikawa — near the Earth indicate that both the collision rate given in Table VIII and the contribution of long-period comets to it may have been slightly underestimated. The appropriate adjustment of the log-t values by less than — 0.10 has no effect of the general conclusions, however.The success of the orbiting observatory IRAS in detecting faint interplanetary objects lends better promises for the increase of the number of known objects (in particular comets) than anticipated in Section 6 and estimated in Table IX. Obviously, the outcome will largely depend on the implementation, time coverage and degree of exploitation of similar projects in the near future.  相似文献   

15.
THE CLUSTER ION SPECTROMETRY (CIS) EXPERIMENT   总被引:5,自引:0,他引:5  
The Cluster Ion Spectrometry (CIS) experiment is a comprehensive ionic plasma spectrometry package on-board the four Cluster spacecraft capable of obtaining full three-dimensional ion distributions with good time resolution (one spacecraft spin) with mass per charge composition determination. The requirements to cover the scientific objectives cannot be met with a single instrument. The CIS package therefore consists of two different instruments, a Hot Ion Analyser (HIA) and a time-of-flight ion COmposition and DIstribution Function analyser (CODIF), plus a sophisticated dual-processor-based instrument-control and Data-Processing System (DPS), which permits extensive on-board data-processing. Both analysers use symmetric optics resulting in continuous, uniform, and well-characterised phase space coverage. CODIF measures the distributions of the major ions (H+, He+, He++, and O+) with energies from ~0 to 40 keV/e with medium (22.5°) angular resolution and two different sensitivities. HIA does not offer mass resolution but, also having two different sensitivities, increases the dynamic range, and has an angular resolution capability (5.6° × 5.6°) adequate for ion-beam and solar-wind measurements.  相似文献   

16.

A Time-Delay Integration (TDI) image acquisition and processing system has been developed to capture ICON’s Far Ultraviolet (FUV) Spectrographic Imager data. The TDI system is designed to provide variable-range motion-compensated imaging of Earth’s nightside ionospheric limb and sub-limb scenes viewed from Low Earth Orbit in the 135.6 nm emission of oxygen with an integration time of 12 seconds. As a pre-requisite of the motion compensation the TDI system is also designed to provide corrections for optical distortions generated by the FUV Imager’s optical assembly. On the dayside the TDI system is used to process 135.6 nm and 157.0 nm wavelength altitude profiles simultaneously. We present the TDI system’s design methodology and implementation as an FPGA module with an emphasis on minimization of on-board data throughput and telemetry. We also present the methods and results of testing the TDI system in simulation and with Engineering Ground Support Equipment (EGSE) to validate its performance.

  相似文献   

17.
Tomasko  M.G.  Buchhauser  D.  Bushroe  M.  Dafoe  L.E.  Doose  L.R.  Eibl  A.  Fellows  C.  Farlane  E. M  Prout  G.M.  Pringle  M.J.  Rizk  B.  See  C.  Smith  P.H.  Tsetsenekos  K. 《Space Science Reviews》2002,104(1-4):469-551
The payload of the Huygens Probe into the atmosphere of Titan includes the Descent Imager/Spectral Radiometer (DISR). This instrument includes an integrated package of several optical instruments built around a silicon charge coupled device (CCD) detector, a pair of linear InGaAs array detectors, and several individual silicon detectors. Fiber optics are used extensively to feed these detectors with light collected from three frame imagers, an upward and downward-looking visible spectrometer, an upward and downward looking near-infrared spectrometer, upward and downward looking violet phtotometers, a four-channel solar aerole camera, and a sun sensor that determines the azimuth and zenith angle of the sun and measures the flux in the direct solar beam at 940 nm. An onboard optical calibration system uses a small lamp and fiber optics to track the relative sensitivity of the different optical instruments relative to each other during the seven year cruise to Titan. A 20 watt lamp and collimator are used to provide spectrally continuous illumination of the surface during the last 100 m of the descent for measurements of the reflection spectrum of the surface. The instrument contains software and hardware data compressors to permit measurements of upward and downward direct and diffuse solar flux between 350 and 1700 nm in some 330 spectral bands at approximately 2 km vertical resolution from an alititude of 160 km to the surface. The solar aureole camera measures the brightness of a 6° wide strip of the sky from 25 to 75° zenith angle near and opposite the azimuth of the sun in two passbands near 500 and 935 nm using vertical and horizontal polarizers in each spectral channel at a similar vertical resolution. The downward-looking spectrometers provide the reflection spectrum of the surface at a total of some 600 locations between 850 and 1700 nm and at more than 3000 locations between 480 and 960 nm. Some 500 individual images of the surface are expected which can be assembled into about a dozen panoramic mosaics covering nadir angles from 6° to 96° at all azimuths. The spatial resolution of the images varies from 300 m at 160 km altitude to some 20 cm in the last frames. The scientific objectives of the experiment fall into four areas including (1) measurement of the solar heating profile for studies of the thermal balance of Titan; (2) imaging and spectral reflection measurements of the surface for studies of the composition, topography, and physical processes which form the surface as well as for direct measurements of the wind profile during the descent; (3) measurements of the brightness and degree of linear polarization of scattered sunlight including the solar aureole together with measurements of the extinction optical depth of the aerosols as a function of wavelength and altitude to study the size, shape, vertical distribution, optical properties, sources and sinks of aerosols in Titan's atmosphere; and (4) measurements of the spectrum of downward solar flux to study the composition of the atmosphere, especially the mixing ratio profile of methane throughout the descent. We briefly outline the methods by which the flight instrument was calibrated for absolute response, relative spectral response, and field of view over a very wide temperature range. We also give several examples of data collected in the Earth's atmosphere using a spare instrument including images obtained from a helicopter flight program, reflection spectra of various types of terrain, solar aureole measurements including the determination of aerosol size, and measurements of the downward flux of violet, visible, and near infrared sunlight. The extinction optical depths measured as a function of wavelength are compared to models of the Earth's atmosphere and are divided into contributions from molecular scattering, aerosol extinction, and molecular absorption. The test observations during simulated descents with mountain and rooftop venues in the Earth's atmosphere are very important for driving out problems in the calibration and interpretion of the observations to permit rapid analysis of the observations after Titan entry. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
李爽 《航空学报》2009,30(9):1711-1717
 以软着陆小行星为工程应用背景,提出了基于视线(LOS)测量的自主光学相对导航算法,并对导航算法的可观性进行了比较深入的分析研究。首先,基于透视投影模型的共线方程,给出了导航测量方程和测量敏感矩阵;接着,通过多个视线矢量的测量,应用高斯最小二乘微分修正(GLSDC)和龙贝格-马尔塔(LM)算法对探测器的位置和姿态参数进行了估计。然后,通过对误差方差阵逆矩阵秩的分析,比较详尽地分析了不同数量视线观测条件下导航算法的可观度和可观性。最后,通过数学仿真对所提出的自主导航算法的可行性进行了验证。  相似文献   

19.
20.
The Dawn spacecraft is designed to travel to and operate in orbit around the two largest main belt asteroids, Vesta and Ceres. Developed to meet a ten-year life and fully redundant, the spacecraft accommodates an ion propulsion system, including three ion engines and xenon propellant tank, utilizes large solar arrays to power the engines, carries the science instrument payload, and hosts the hardware and software required to successfully collect and transmit the scientific data back to Earth. The launch of the Dawn spacecraft in September 2007 from Cape Canaveral Air Force Station was the culmination of nearly five years of design, development, integration and testing of this unique system, one of the very few scientific spacecraft to rely on ion propulsion. The Dawn spacecraft arrived at its first destination, Vesta, in July 2011, where it will conduct science operations for twelve months before departing for Ceres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号