首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
针对弧齿锥齿轮小轮齿面复杂,加工参数调整计算繁琐,根据小轮切齿加工数学模型,构建与小轮齿面具有相对传动关系的共轭大轮齿面。以完全共轭大轮为基准面,提出一种大轮差齿面曲率修正构建方法。对差齿面和完全共轭齿面叠加后得到的大轮目标齿面进行离散齿面接触分析,结果显示,采用临界干涉法可有效判断啮合状态,真实获得离散齿面的啮合印痕和传动误差曲线。弧齿锥齿轮的滚检试验结果表明,利用齿面曲率修正的方法对完全共轭大轮进行Ease-off二阶修形设计,得到的接触区位置和啮合迹线方向符合满足预定的传动性能。设计的目标齿面可以作为弧齿锥齿轮大轮精密锻造的标准齿面,避免了小轮齿面加工参数的二次调整计算。  相似文献   

2.
基于传动性能和垂直轮位的弧齿锥齿轮齿面设计   总被引:3,自引:2,他引:1  
根据齿面印痕的位置、方向及传动误差幅值的要求,在齿面上设计三个啮合点,通过对这三个啮合点的控制,达到对齿面啮合质量的全程控制.为了满足不同的加工要求,在此基础上,按照给定的垂直轮位的值对小轮加工参数进行再设计,保证传动误差的幅值不变且接触迹线仅有较小的改变.最后分别用该方法和美国Gleason公司的软件设计一对齿轮,并进行齿面印痕、传动误差和齿面对比,两种设计是基本一致的.   相似文献   

3.
航空弧齿锥齿轮承载传动误差的分析与设计   总被引:5,自引:5,他引:0  
曹雪梅  张华  方宗德 《航空动力学报》2009,24(11):2618-2624
在计算时变啮合刚度的基础上,推导了承载传动误差简化计算公式,并与有限元计算方法进行了比较,表明两种计算方法得到的承载传动误差的幅值、形状及一阶频谱幅值随重合度的变化趋势基本一致.根据承载传动误差简化公式定性的分析了负载扭矩与实际重合度的关系、承载传动误差的变化规律、齿面印痕和几何传动误差对承载传动误差的影响.最后根据分析结果,提出基于承载传动误差的齿面优化设计的优化策略,优化变量为接触迹线的角度、几何传动误差的幅值,优化目标为承载传动误差在较宽的负载范围内波动最小.   相似文献   

4.
基于局部综合原理,提出弧齿锥齿轮副的低噪声、低安装误差敏感性设计方法。介绍了基于局部综合原理的弧齿锥齿轮小轮加工参数设计的基本过程,通过预置传动比函数的1阶导数、大轮齿面参考点处接触迹线的切线方向和瞬时接触椭圆的长半轴长度和点接触局部综合公式,求得小轮的加工参数;根据得到的弧齿锥齿轮副的加工参数,进行齿面接触分析,进而获得齿面接触印痕和传动误差曲线;对某型航空弧齿锥齿轮副进行了基于局部综合法的加工参数设计,得到对称抛物线型传动误差曲线和接近于直线的啮合印痕。齿面接触印痕和传动误差曲线有利于降低弧齿锥齿轮副的啮合振动和噪声以及对安装误差的敏感性。  相似文献   

5.
周凯红  唐进元 《航空动力学报》2018,33(10):2542-2553
基于曲面活动标架理论,提出了点啮合齿面整体设计的曲面包络逼近方法:以第一齿面包络特征线为样条曲线,以第二齿面沿接触点迹线的齿面局部结构作为曲面插值条件,通过第一齿面运动不变量描述的运动变换,构造完全由第一齿面的运动不变量描述的第一齿面共轭运动空间作为第二齿面整体优化设计空间,确保齿面设计方法的可全局优化性和可加工性。根据点啮合齿面加载接触实验数据,以空载啮合时两齿面间隙作为预测和控制重载情况下的接触区形状和大小的设计目标参数,建立点啮合齿面整体优化设计的变分不等式模型。与以往点啮合齿面设计和齿面接触分析(TCA)方法相比,该齿面设计方法摆脱了以往齿面接触分析(TCA)中以特定机床加工参数作为齿面重构参数而给齿面优化设计带来的不必要的限制,能在满足预定的加载的啮合特性要求的同时,确保齿面能用盘铣刀通过多轴联动数控加工方法以展成法加工。仿真实例计算和分析表明:本齿面设计方法能形成完整的弧齿锥齿轮齿面,该齿面在满载啮合时,重合度达到2.122,传动误差幅值降低至0.063°,具有优良的加载啮合特性。   相似文献   

6.
基于预定啮合特性的点啮合齿面设计方法   总被引:4,自引:4,他引:0  
针对格里森螺旋锥齿轮齿面设计方法无法在整个齿面接触传动过程中有效控制齿面啮合特性的不足,论述一种按预定的啮合特性设计点啮合齿面的理论和方法:啮合齿面的接触迹线上每一点的几何结构按预定的齿面啮合特性要求设计,而与特定的机床结构参数无关.啮合点的二阶接触参数通过弹性齿轮副的载荷-变形效应条件,而不是接触区的位置、大小和形状来设计.实例计算和分析表明本文的点啮合齿面设计方法是格里森齿面设计方法在数控技术条件下的发展和完善.   相似文献   

7.
为了能够实现对齿面啮合性能的灵活控制,针对弧齿锥齿轮小轮提出一种齿面拓扑修形方法,即借助二阶曲面对齿面偏差拓扑的近似表达,将齿面拓扑修形分解为5个方向:螺旋角修正、压力角修正、齿长曲率修正、齿廓曲率修正及齿面挠率修正,通过改变5个方向的修形系数对小轮齿面拓扑结构进行自由控制。在此基础上,建立齿面偏差与机床加工参数之间的修正数学模型,通过构建敏感性矩阵并采用最小二乘法求解,反求出获得修形齿面的小轮加工参数,以便指导加工。以一对弧齿锥齿轮副为例进行修形啮合分析,仿真结果表明:选取齿长曲率修形系数为0.0001,齿廓曲率修形系数为0.0005,齿面挠率修形系数为0.0003,对齿面进行拓扑修形后传动误差幅值为-25.60″,接触迹线倾斜角度变为54.7°,相比原始结果啮合性能得到改善。滚检接触区与理论仿真结果一致,验证了修形方法的有效性。   相似文献   

8.
研究了弧线齿面齿轮的数控切齿及其啮合特性.基于假想产形齿轮的概念,同时考虑了刀具法向截面的修形,推导弧线齿面齿轮的齿面方程;以坐标变换为工具,建立其机床加工模型,确定各运动轴的多项式表达式;在此基础上,建立了考虑安装误差的弧线齿面齿轮副接触分析模型.计算结果表明:通过面齿轮的齿面修形,可以降低啮合转换点处的传动误差幅值,并获得较好的传动误差曲线.   相似文献   

9.
斜齿面齿轮几何传动误差的设计   总被引:6,自引:2,他引:4  
沈云波  方宗德  赵宁  郭辉 《航空动力学报》2008,23(11):2147-2152
主要对沿齿高方向修形的斜齿面齿轮副几何传动误差进行了设计.为了避免边缘接触,提高面齿轮传动的连续性和稳定性,采用了一种沿齿高方向曲线修形的面齿轮副齿面结构,对仅有小轮齿面修形的面齿轮副和大、小轮齿面均修形的面齿轮副的几何传动误差进行了设计比较.结果表明,仅小轮沿齿高方向曲线修形的斜齿面齿轮副传动误差为非对称的抛物线,装配误差影响传动误差幅值;沿齿高方向两轮均修形的面齿轮副,恰当的设计齿条刀具抛物线修形因数a1,as和抛物线顶点的位置参数u0,不论是否对准安装,几何传动误差均为连续的对称抛物线型.   相似文献   

10.
为改善航空弧齿锥齿轮的承载啮合性能,结合ease-off技术提出一种波动齿面设计方法以降低高重合度弧齿锥齿轮的承载传动误差。鉴于中凹型修形曲线(修形齿面的几何传动误差曲线)可极大地减小高重合度弧齿锥齿轮传动的承载传动误差波动幅值,创建一种与高重合度相适应的波动齿面修形模型;结合ease-off技术建立以降低承载传动误差波动幅值为目标的优化模型;通过优化得到具有良好啮合性能的高重合度弧齿锥齿轮。分析发现:优化后2阶传动误差设计弧齿锥齿轮传动的承载传动误差波动幅值降低了34.152%,而由波动齿面设计方法所得改进修形弧齿锥齿轮的承载传动误差进一步降低了61.492%,有效地改善了高重合度弧齿锥齿轮传动性能,为高性能弧齿锥齿轮齿面设计奠定理论基础。   相似文献   

11.
构造拓扑修形齿面的面齿轮传动主动设计   总被引:2,自引:2,他引:0  
为了改善加工参数较少的面齿轮传动的啮合性能,提出了用给定的啮合性能对面齿轮和小齿轮齿面进行拓扑修形设计的方法.面齿轮用插齿法加工,面齿轮与插齿刀的转角关系由预设的传动误差确定,由此确定面齿轮的拓扑修形齿面.然后用接触路径的位置及其方向和接触椭圆的大小构造小齿轮的拓扑修形齿面,该齿面用共轭点接触法磨齿加工,建立了小齿轮拓扑修形齿面与加工参数之间的线性方程.结果表明:齿面接触分析(TCA)获得的传动误差、接触路径与预设的传动误差、接触路径相同,TCA仿真的椭圆长度与预设椭圆长度相差范围为0.175 2~1.16mm.  相似文献   

12.
This paper proposes a new approach to design pinion machine tool-settings for spiral bevel gears by controlling contact path and transmission errors. It is based on the satisfaction of contact condition of three given control points on the tooth surface. The three meshing points are controlled to be on a predesigned straight contact path that meets the pre-designed parabolic function of transmission errors. Designed separately, the magnitude of transmission errors and the orientation of the contact path are subjected to precise control. In addition, in order to meet the manufacturing requirements, we suggest to modify the values of blank offset, one of the pinion machine tool-settings, and redesign pinion ma- chine tool-settings to ensure that the magnitude and the geometry of transmission errors should not be influenced apart from minor effects on the predesigned straight contact path. The proposed approach together with its ideas has been proven by a numerical example and the manufacturing practice of a pair of spiral bevel gears.  相似文献   

13.
小轮双向修形参数对面齿轮副啮合性能的影响   总被引:1,自引:1,他引:0  
吴聪  李大庆  魏冰阳 《航空动力学报》2012,27(11):2629-2634
提出了面齿轮传动副小轮双向修形方法,推导了修形小轮及面齿轮齿面方程,建立了考虑安装误差的传动啮合方程,研究了局部共轭面齿轮副的啮合特性.算例分析表明:通过对小轮双向修形,可以获得开口向下的抛物线传动误差,改变双向修形参数值能控制接触路径的走向和传动误差的幅值.该方法能实现对面齿轮副局部共轭啮合特性的预控,对避免面齿轮副传动的边缘接触,抑制其啮合振动、噪声具有重要的理论意义.   相似文献   

14.
成形法加工的弧线齿面齿轮几何接触分析   总被引:4,自引:2,他引:2  
研究了成形法加工的弧线齿面齿轮齿面接触分析及齿面修形.弧线产形齿条是由具有一定刀倾角的刀盘形成,用其推导展成加工的弧线齿圆柱齿轮和成形法加工的弧线齿面齿轮齿面方程,同时通过刀具抛物线齿廓对大轮齿面进行修形;在此基础上,建立了包括考虑安装误差在内的弧线齿面齿轮齿面接触分析(TCA)模型;最后通过算例的啮合性能分析,表明对大轮齿面修形可降低传动误差幅值和获得较好传动误差曲线,且该类传动装置对安装误差敏感性较低.   相似文献   

15.
差曲面拓扑的齿轮啮合刚度计算与承载接触分析   总被引:2,自引:2,他引:0  
基于齿条-齿轮等切共轭产形原理,构建齿面数值模型、ease-off差齿面,对ease-off蕴含的齿面啮合信息进行解析,获得了齿面接触路径、传动误差、接触线瀑布图;综合ease-off拓扑仿真与轮齿刚度非线性单元耦合解析,给出了修形拓扑齿面的啮合刚度、承载传动误差的计算方法。沿接触路径遍历接触线序列,获得了轮齿时变啮合刚度、承载传动误差与载荷分布图;给出了2阶抛物面对称与对角拓扑两种修形形式算例,求出了系列载荷作用下的啮合刚度、承载传动误差、齿面载荷分布。结果显示:随着载荷的增加,轮齿啮合刚度时变效应明显减弱;承载传动误差波动与啮合刚度、修形梯度密切相关;对角修形在啮合刚度、传动误差、载荷分布特性方面好于对称修形。   相似文献   

16.
弧齿锥齿轮误差敏感性优化设计   总被引:3,自引:3,他引:0  
从齿面结构上提出了通过优化差曲面全曲率来改善弧齿锥齿轮的安装误差敏感性问题的方法.推导了啮合点处沿齿线方向的两啮合齿面全曲率作为敏感性系数,分析了局部综合参数和参考点位置参数对参考点处的敏感系数的影响.提出了通过优化传动比一阶导数、接触迹线方向、二阶变性系数和三阶变性系数,获得对安装误差敏感性低的小轮加工参数.算例表明:优化后的齿轮副在啮合过程中的敏感性系数控制在较小范围之内,传动误差的幅值和对称性均满足设计要求,改善了齿轮副的啮合质量.   相似文献   

17.
弧齿锥齿轮传动误差曲线优化的半变性法   总被引:2,自引:1,他引:1  
以预置的传动误差曲线为目标,提出了弧齿锥齿轮传动误差曲线优化的半变性法.以局部综合原理为基础,先初步确定小轮加工参数并进行齿面接触分析(TCA),将结果曲线与预置曲线对比后,再微调切削速比和三阶变性系数以缩小两者之间的差距.采用半变性法对某航空弧齿锥齿轮副的传动误差曲线进行了优化,研究发现:切削速比与传动误差曲线开口大小有关,三阶变性系数与传动误差曲线整体歪斜程度有关.优化后的传动误差曲线与预置曲线吻合度较好,且接触印痕满足设计要求,证明了半变性法的有效性.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号