首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 127 毫秒
1.
尾缘锯齿结构的降噪物理机制实验   总被引:4,自引:3,他引:1  
对比分析了常规尾缘翼型与锯齿尾缘翼型尾缘湍流流场的基本特征,并通过线阵列的方法测量了两种尾缘结构的噪声.结果表明:锯齿尾缘翼型尾缘湍流流场的湍流强度以及3个方向上的湍流强度都相比于常规尾缘翼型有显著减少,声场结果显示锯齿尾缘翼型对尾缘噪声有显著减小,对前缘噪声影响很小.锯齿结构加宽了尾迹区域并加快了大涡的破碎,产生了额外的马蹄涡,湍流脉动衰减率沿着流动方向变大.   相似文献   

2.
跨声速涡轮静子端壁气膜冷却数值研究   总被引:1,自引:0,他引:1  
对跨声速涡轮静子端壁气膜冷却进行了数值研究。研究发现涡轮静子端壁存在几个强换热区域:叶片前缘马蹄涡及前缘马蹄涡区域、吸力面马蹄涡分支覆盖区域、通道中靠近压力面侧和尾缘附近及尾缘后区域。针对端壁区域复杂的换热分布,设计了1种新型端壁全气膜冷却布置。通过数值研究对比了在不同进口吹风比情况下的壁面Nu、壁面气膜冷却效果和壁面热负荷。结果表明:存在最佳的进口吹风比,即在前缘Minlet=1.0时,尾缘Minlet=4.0时,端壁区域冷却效果最好。  相似文献   

3.
采用粒子图像测速仪PIV,对具有半管道式结构特点的空调器室外机轴流风机内部流场进行了实验研究,并结合实验结果分析了叶片顶部的叶尖涡和叶片出口尾缘涡的流动特性。实验结果显示在轴流风机流道内部叶顶区域存在与叶轮旋转方向相反的叶尖涡结构。叶尖涡产生于叶片前缘叶顶近吸力面侧,在流道内部与主流发生干涉后朝向周向和出口传播并逐渐耗散。叶尖涡涡心轨迹与叶顶弦长方向的夹角为10°,在叶高方向上叶尖涡的径向位置并不固定。与普通管道内部流动不同,叶片顶部与导风罩间的间隙中未捕捉到明显的叶顶泄漏涡现象。叶片出口近尾缘处30%以上叶高明显捕捉到尾缘涡结构,叶片压力面和吸力面侧的径向速度存在明显的方向变化,切向速度在尾迹区增加。  相似文献   

4.
扑翼获能器是一种模仿飞鸟振翅扑动的新型获能装置.为提高扑翼的获能效率,建立了一种带有尾缘襟翼的扑翼模型,且该种襟翼在扑翼运行过程中始终向翼型压力面偏转,利用计算流体力学方法求解了二维不可压缩非稳态Navier-Stokes方程.在雷诺数Re?=?4.7×105的工况下,分析了尾缘襟翼对扑翼流场的作用机理,并与原始翼型扑翼进行了对比.同时,还研究了翼型厚度对具有尾缘襟翼扑翼获能的影响.结果表明:扑翼升沉力做功占其获能的主要部分,应用尾缘襟翼后,扑翼的升沉力在整个扑动周期内都得到了提高,并且升沉力与升沉速度的协同性获得改善;尾缘襟翼对扑翼获能效率的提高作用在高频率下效果最为明显,最多可以得到23.5%的相对提升;此外,翼型厚度影响着扑翼前缘涡的演化,翼型厚度增加,前缘涡的生成受到抑制,扑翼获能效率则随翼型厚度增大呈先增加后降低的规律,因此存在最佳翼型.  相似文献   

5.
仿生学翼型尾缘锯齿降噪机理   总被引:1,自引:0,他引:1  
仝帆  乔渭阳  王良锋  纪良  王勋年 《航空学报》2015,36(9):2911-2922
采用大涡模拟与声类比的方法研究了尾缘锯齿对翼型自噪声的影响。以SD2030翼型为研究对象,设计的尾缘锯齿幅值为10%弦长,周期为4%弦长。模拟了来流速度为31 m/s、0° 攻角下直尾缘翼型与锯齿尾缘翼型的流场,对应的基于弦长的雷诺数约为310 000。详细分析了尾缘锯齿对翼型尾缘湍流流场的影响,并通过FW-H方程计算大涡模拟提取的声源项,得到直尾缘翼型与锯齿尾缘翼型的声场。研究发现,锯齿尾缘可以明显降低翼型中低频范围内的噪声,在4 000 Hz以下,窄带噪声最多可降低约16 dB。但尾缘锯齿对翼型气动性能有着不利影响。进一步研究表明,该状态下翼型噪声主要由层流边界层引起的涡脱落噪声主导,尾缘锯齿可以抑制层流边界层引起的涡脱落现象,降低翼型升力脉动与尾缘附近的表面压力脉动,减弱尾缘处的低频湍流脉动与涡量,并有效降低尾缘附近涡的展向相关性,这些因素的综合作用使得翼型自噪声降低。  相似文献   

6.
轴流压气机转子近失速工况全通道 数值模拟   总被引:6,自引:2,他引:4  
对某亚声速轴流压气机转子进行了全通道三维非定常数值模拟,获得了该压气机近失速工况下的详细流动情况.转子前缘均匀布置的十支静压数值探针监测结果表明,转子圆周上出现两个静压扰动区域,其中一个逐渐发展为突尖波.流场分析表明,叶顶通道中存在频繁的分离涡运动,静压扰动区域中分离涡的强度较大.分离涡诱发间隙流形成“前缘溢流”和“尾缘反流”.静压扰动区域沿圆周方向传播是由分离涡在通道之间的传递引起的.传播过程中,分离涡强度的持续增大是突尖波形成的关键因素.通道中较强的“尾缘反流”沿通道上行并绕过叶片形成“前缘溢流”的现象可作为突尖波形成的标志.   相似文献   

7.
改变昆虫翅膀的褶皱结构可以优化翼型的气动性能,有利于微型飞行器的气动设计。以蜻蜓翼作为参考,采用计算流体力学(CFD)的方法计算了攻角范围为0°~20°,雷诺数范围为700~2300时褶皱位于前缘、尾缘和中部位置时三种翼型的滑翔气动性能。结果表明:在不同攻角和雷诺数下,褶皱位于尾缘的翼型具有最大的升力系数和升阻比,滑翔气动性能最优;当雷诺数为1500,攻角为10°时,褶皱位于尾缘的翼型时均升力系数分别比位于前缘和中部的翼型提高了58%和82%,升阻比分别提高了49%和33%;这是由于尾缘褶皱中的涡起到了延缓前缘涡脱落的作用,使前缘涡更为集中,更贴近壁面。   相似文献   

8.
基于锯齿尾缘结构在航空发动机上的应用,对其降噪机理进行研究。通过3维热线风速仪测量2种尾缘结构的尾迹流场揭示锯齿降噪的流动本质,其结果显示出锯齿尾缘后流场的细微湍流结构变化规律,并在尾迹流场可见单个锯齿的齿峰和齿谷。结果表明:锯齿尾缘后尾迹中心线速度的衰减率比直尾缘的高;湍流峰值因为锯齿尾缘的存在出现在离翼型更远处,锯齿在近尾迹区产生了额外的马蹄涡。  相似文献   

9.
为研究跨声速压气机转子失速机理,全周非定常数值模拟了某跨声速压气机单转子的失稳过程。结果表明:该转子由叶尖Spike扰动诱发旋转失速。在小流量稳定工作状态,压气机转子叶尖区域存在"旋转不稳定"(Rotating Instability,RI)流动现象。压气机节流过程中,转子进出口的流量降低,叶尖区流场非定常波动幅值增大。近失速状态时,RI扰动团的典型流场结构"径向涡"在叶尖区域形成堵塞,导致相邻叶片前缘间歇性地出现溢流现象。随着压气机进一步节流,转子叶尖的负荷达到极值,叶片通道尾缘逆压力梯度过大,出现倒流。尾缘倒流的出现又进一步增加通道内的堵塞,最终形成Spike扰动。失速先兆对应的流场结构是沿叶片前缘额线向相邻叶片压力面周向运动的"径向涡"结构。  相似文献   

10.
柏宝红  李晓东 《航空动力学报》2016,31(11):2710-2716
详细研究了翼型湍流边界层尾缘宽频噪声源空间分布与辐射特性的关系.采用基于雷诺平均流场的翼型尾缘宽频预测方法研究了NACA0012翼型湍流边界层尾缘宽频噪声在4种不同工况下的噪声源空间分布与辐射特性.首先计算了NACA0012翼型湍流边界层尾缘噪声源在不同频率下的空间分布.计算结果发现:边界层中湍流是翼型湍流边界层尾缘噪声声源.随着频率的增加,噪声源强度和噪声源空间尺寸都是先增加后减小,噪声源位置不断靠近翼型尾缘.同时也计算了边界层内不同位置处的噪声源对远场噪声的辐射特性,结果表明:边界层内层区域,其噪声频谱能量集中在高频;边界层外部区域,其噪声能量集中在中低频;攻角增大或者来流速度减小,噪声能量向低频转移.   相似文献   

11.
陆夕云  尹协远  庄礼贤 《航空学报》1992,13(11):571-576
通过对非定常N-S方程的数值求解,研究了最大厚度为12%的Karman-Trafftz翼型在Re数为1000时的大迎角俯仰振动。其中着重分析了旋涡结构与表面压强分布的关系。数值研究表明,后缘形状、折合频率等对涡结构演化有重要影响。后缘涡顺利地从后缘脱落时,失速涡在上翼面能诱导出较大的吸力。后缘涡在翼面上驻留时,各涡产生复杂的相互干扰,对失速涡在上翼面产生吸力有不利影响。  相似文献   

12.
锯齿尾缘叶片气动特性和绕流流场的数值研究   总被引:2,自引:1,他引:1       下载免费PDF全文
以基于NACA 0018翼型的锯齿尾缘仿生叶片为研究对象,采用大涡模拟的方法研究锯齿相对齿宽与相对齿高对锯齿尾缘叶片的气动特性和非定常绕流流场的影响规律和机制.研究表明,尾缘锯齿参数对叶片气动性能的影响是复杂的非线性过程,在一定来流攻角范围内能提高升阻比,但失速提前.如在9.4°~14.8°来流攻角范围内,不同相对齿宽系列叶片的升阻比高于原始叶片,升阻比与锯齿相对齿宽之间没有线性关系.研究还表明,锯齿尾缘能延迟边界层分离,加速尾迹的流动掺混和能量扩散,改变非定常涡结构和涡脱落频率.相对齿高的变化对非定常流动特性的影响更为显著.尾缘锯齿诱导的二次湍流射流和吸力面侧反向涡对改变了原始叶片的绕翼环量,进而影响锯齿尾缘叶片的气动特性和绕流流场特性.   相似文献   

13.
王良益 《航空学报》1995,16(5):592-595
在计算与风洞实验的基础上 ,提出了机翼剪切翼梢气动布局 ,对平面形状与翼型进行了优化设计 ,达到了巡航状态与爬升阶段较高的增升减阻要求。计算采用涡格面元法与涡升力展向分布吸力比拟法相结合的方法 ,既能考虑气动力的非线性因素 ,又有较高的计算精度与速度。计算结果与实验数据十分吻合。通过分析得到 ,在矩形翼翼梢处增加具有较大前缘后掠角的梯形剪切翼梢有不仅增加机翼展弦比 ,且可改变展向环量分布 ,使其接近椭圆分布 ;剪切翼梢上的前缘涡可抑制翼端涡的作用 (使翼端涡强度变弱 ) ,并在剪切翼梢上产生附加升力  相似文献   

14.
Transonic flow over a thin airfoil at low Reynolds number was studied numerically by directly solving two-dimensional full Navier-Stokes equations through 5th order weighted essentially non-oscillatory(WENO) scheme without using any turbulence model.A series of distinguished unsteady phenomena for a thin 2-D transonic airfoil flow were presented.Due to continuous adverse pressure gradient in the subsonic flow downstream of the sonic line, the unsteady separated boundary layer with main vortex and secondary vortex was developed at the rear of the airfoil.At the trailing edge,the vortex-shedding was characterized by periodical connection of the main vortex and secondary vortex on the other side of the airfoil.The unsteady separation and vortex-shedding occurred with the same period.On the airfoil surface,the average pulse pressure related to the unsteady supersonic region was obviously smaller than that related to the vortex-shedding at the trailing edge.With the attack angle increasing from 0° to 2°, the frequency of vortex-shedding decreases about 4.2%.At last, the turbulence intensity and many second-order statistics in the wake region were investigated.   相似文献   

15.
旋翼桨-涡干扰气动特性计算及参数影响研究   总被引:2,自引:1,他引:1  
史勇杰  招启军  徐国华 《航空学报》2010,31(6):1106-1114
建立了一个适用于旋翼桨-涡干扰(BVI)气动特性分析的数值方法。在该方法中,控制方程采用惯性坐标系下的非定常Euler方程,以适合于分析BVI流场的特点;为便于前飞流场分区求解和信息传递,使用了嵌套网格方法;对于流场中涡线的模拟,建立了一种适用于有限体积格式的涡引入方法——广义网格速度法,以简化计算。应用上述方法对旋翼BVI流场进行了计算,并与可得到的试验数据进行对比,验证了方法的有效性。通过对比桨叶弦向位置压强的变化得出,在旋翼BVI过程中,气动载荷主要来自桨叶10%弦长内的前缘部分的压强突变。文中还进一步分析了涡强、干扰距离和干扰角度对BVI气动特性的影响。本文的BVI数值计算表明:当涡接近桨叶前缘时,升力达到最大;而涡位于后缘位置时,诱导速度改变桨叶环量分布,破坏了后缘的库塔条件,但随着涡的远离,桨叶表面环量开始重构。  相似文献   

16.
In order to alleviate the dynamic stall effects in helicopter rotor, the sequential quadratic programming(SQP) method is employed to optimize the characteristics of airfoil under dynamic stall conditions based on the SC1095 airfoil. The geometry of airfoil is parameterized by the class-shape-transformation(CST) method, and the C-topology body-fitted mesh is then automatically generated around the airfoil by solving the Poisson equations. Based on the grid generation technology, the unsteady Reynolds-averaged Navier-Stokes(RANS) equations are chosen as the governing equations for predicting airfoil flow field and the highly-efficient implicit scheme of lower–upper symmetric Gauss–Seidel(LU-SGS) is adopted for temporal discretization. To capture the dynamic stall phenomenon of the rotor more accurately, the Spalart–Allmaras turbulence model is employed to close the RANS equations. The optimized airfoil with a larger leading edge radius and camber is obtained. The leading edge vortex and trailing edge separation of the optimized airfoil under unsteady conditions are obviously weakened, and the dynamic stall characteristics of optimized airfoil at different Mach numbers, reduced frequencies and angles of attack are also obviously improved compared with the baseline SC1095 airfoil. It is demonstrated that the optimized method is effective and the optimized airfoil is suitable as the helicopter rotor airfoil.  相似文献   

17.
This study focuses on the trailing-edge separation of a symmetrical airfoil at a low Rey-nolds number. Finite volume method is adopted to solve the unsteady Reynolds-averaged Navier-Stokes (RANS) equation. Flow of the symmetrical airfoil SD8020 at a low Reynolds number has been simulated. Laminar separation bubble in the flow field of the airfoil is observed and process of unsteady bubble burst and vortex shedding from airfoil surfaces is investigated. The time-dependent lift coefficient is characteristic of periodic fluctuations and the lift curve varies nonlinearly with the attack of angle. Laminar separation occurs on both surfaces of airfoil at small angles of attack. With the increase of angle of attack, laminar separation occurs and then reattaches near the trailing edge on the upper surface of airfoil, which forms laminar separation bubble. When the attack of angle reaches certain value, the laminar separation bubble is unstable and produces two kinds of large scale vortex, i.e. primary vortex and secondary vortex. The periodic processes that include secondary vortex production, motion of secondary vortex and vortex shedding cause fluctuation of the lift coefficient. The periodic time varies with attack of angle. The secondary vortex is relatively stronger than the primary vortex, which means its influence is relatively stronger than the primary vortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号