首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
为研究跨声速压气机转子失速机理,全周非定常数值模拟了某跨声速压气机单转子的失稳过程。结果表明:该转子由叶尖Spike扰动诱发旋转失速。在小流量稳定工作状态,压气机转子叶尖区域存在"旋转不稳定"(Rotating Instability,RI)流动现象。压气机节流过程中,转子进出口的流量降低,叶尖区流场非定常波动幅值增大。近失速状态时,RI扰动团的典型流场结构"径向涡"在叶尖区域形成堵塞,导致相邻叶片前缘间歇性地出现溢流现象。随着压气机进一步节流,转子叶尖的负荷达到极值,叶片通道尾缘逆压力梯度过大,出现倒流。尾缘倒流的出现又进一步增加通道内的堵塞,最终形成Spike扰动。失速先兆对应的流场结构是沿叶片前缘额线向相邻叶片压力面周向运动的"径向涡"结构。  相似文献   

2.
Eckardt离心叶轮失速流场非定常特征分析   总被引:1,自引:1,他引:0       下载免费PDF全文
王生玲  刘正先 《推进技术》2019,40(3):542-551
为明确离心压气机失速流场特征及类型,对Eckardt离心叶轮进行全通道非定常流场模拟,得到以下失速流场特征结果:(1)叶片前缘叶顶区域明显存在4个突尖型失速团,同时前缘涡、通道涡和低速二次涡共同作用形成流道内的非定常不稳定流动,诱发旋转失速;(2)与轴流叶轮突尖失速特征相似,离心叶轮内同样存在前缘溢流,但不存在尾缘反流,而呈现与径向和周向扭曲结构相关的新特征:叶顶间隙流与流道中的偏转二次流汇合,形成尺度更小、范围更大的低速二次涡。经进一步的空间傅里叶分析,确定失速团以60%~73%的叶轮转速沿周向传播,且由叶轮入口向下游移动,伴随发生涡脱落和破碎,使流场进入深度失速状态。通过分析这些失速流场特征,得出离心叶轮中突尖失速特征与轴流相比既有相同之处也有不同之处的结论。  相似文献   

3.
以跨声速单级轴流压气机为试验对象,通过在机匣表面安装高频响应动态压力传感器测量转子叶尖间隙流场,观察了不同转速下转子叶尖间隙泄漏流动结构随工作状态变化的响应特征。试验结果表明:100%转速时,叶尖间隙泄漏涡通过脱体激波后会突然膨胀而出现涡破裂现象,在转子通道内形成大面积的高静压低速堵塞区,对转子叶尖区域通道造成严重堵塞,迫使叶尖间隙泄漏流在相邻转子叶片叶尖前缘发生溢流,最终触发压气机内部流动失稳。80%转速时,叶尖间隙泄漏涡对叶片通道主流区堵塞影响较小,通道激波对进口来流产生阻滞作用,气流在进入转子叶片通道进口前严重分离,使得整个转子叶片通道完全被堵塞,最终触发压气机内部流动失稳。  相似文献   

4.
为了探究近失速工况下,跨声速压气机转子中非定常流动及相关流动机制,采用多通道全三维数值模拟方法对跨声速转子其内部流场进行了数值模拟,并利用已有的实验数据对计算结果进行了校核。对近失速工况探针监测结果的分析表明:流场中出现了非定常扰动,且扰动最活跃的区域位于近叶尖通道靠近叶片前缘的压力面侧;随着流量的降低,非定常扰动的幅值增大,波动周期变长。对近叶尖瞬态流场的分析表明:流场中的一个不同于泄漏涡的涡结构(命名为叶尖二次涡)的出现及其沿流向的发展诱发了非定常静压扰动,而且其强度随着流量的降低而增强,由此导致了非定常扰动的周期变长,振幅增加。伴随着叶尖二次涡强度的增加,叶顶通道的阻塞以及由叶尖二次涡诱发的“前缘溢流”也随之增强。因此,叶尖二次涡的出现及其强度的变化是影响该跨声速转子流动稳定性的主要因素之一。  相似文献   

5.
以西北工业大学亚音轴流压气机实验台的孤立转子为研究对象,对其进行了单通道定常、非定常的全三维数值模拟,研究了轴流压气机近失速工况下转子叶尖流动特性。通过对比分析转子在最高效率工况和近失速工况下的定常模拟结果,发现在近失速工况下转子叶顶流线变得更加切向,来流攻角不断增大,最终导致失速的发生。非定常模拟指出,在失速先兆区转子叶顶出现了前缘溢流和尾缘回流的现象,这满足突尖型失速先兆出现的两个准则,所以压气机为突尖型失速。  相似文献   

6.
采用非定常数值方法模拟了低雷诺数条件下NASA Rotor 37跨声速压气机转子内部流动失稳机制.结果表明,随着压气机失速工况的推进,附面层径向涡不断扩大和增强,由附面层径向涡引发的叶顶附面层分离阻塞区不断向叶片前缘移动,直至与叶顶压力面前缘附近由激波和间隙泄漏流诱发的阻塞区相结合,使叶顶通道来流完全被阻塞,最终触发压气机流动失稳.   相似文献   

7.
轴流压气机转子叶尖二次涡的试验验证及形成机理   总被引:7,自引:7,他引:0  
对轴流压气机转子机匣壁面静压进行动态测量,采用小波分析方法处理近失速工况动态压力测量信号,功率谱显示在与二次涡相近的频率上存在较高的能量带,能量峰值沿轴向的衰减与二次涡的变化规律相符,表明二次涡在流场中存在是可能的。针对相同转子进行全通道非定常数值模拟,计算结果表明,近失速工况下,转子圆周每个通道叶顶附近均存在规律一致的二次涡运动。叶片中后段间隙泄漏流与间隙泄漏涡破碎产生的低能流体相互作用,在泄漏涡破碎形成的堵塞区域中形成二次涡。二次涡运动使得近叶顶载荷分布发生变化,从而导致近叶顶流场出现了一种周期性的自维持的非定常流动现象。  相似文献   

8.
跨声速轴流压气机间隙泄漏流触发旋转失速   总被引:4,自引:3,他引:1       下载免费PDF全文
通过对跨声速轴流压气机NASA转子37进行单通道定常及多通道定常、非定常数值模拟,单通道定常数值模拟结果与实验结果能较好吻合。多通道非定常数值模拟结果显示,间隙泄漏流及其与激波干涉的非定常振荡,触发突尖型旋转失速先兆,具体表现为叶顶前缘间隙泄漏流溢出。失速团首先在叶顶处形成,且速度约为80%转速。随着流量的下降,失速团进一步发展,在失速通道内,激波与叶片前缘完全分离,且在叶片尾缘出现回流。当转子完全数值失速时,失速团周向尺度约为4个通道,且径向占据约半个叶高。  相似文献   

9.
上游尾迹与涡轮转子泄漏流相互作用数值模拟   总被引:7,自引:5,他引:2  
叶轮机内部流动本质上是周期性非定常的,研究涡轮转子叶尖区域的非定常相互作用机理,对提高小展弦比高负荷涡轮性能具有重要意义.利用数值模拟方法研究了上游静子尾迹与涡轮转子叶尖泄漏流的非定常相互作用,分析了定常结果、时间平均结果以及瞬时时刻结果的流动图画.结果表明:上游静子尾迹与涡轮转子尖区二次流的相互作用能明显影响泄漏涡和机匣通道涡的时空演化规律,从而改变转子尖区的损失分布.上游尾迹在转子通道中传播时,诱导泄漏涡和通道涡区域出现周期性的扰动涡对,扰动涡对沿着泄漏涡和通道涡的轨迹向下游运动,使得转子尖区二次流结构呈现周期性变化.   相似文献   

10.
为了研究转子叶尖开缝对跨声速轴流压气机性能和流场结构的影响机理,设计了一种渐缩式射流缝,并提出在转子叶尖不同相对位置开缝的流动控制方案,通过数值计算的方法对各开缝方案与压气机的流场进行对比分析。结果表明,开缝位置靠近前缘时压气机总压比提升了1.39%,但综合稳定裕度降低了0.18%;开缝位置靠近尾缘时,压气机总压比提升了2.78%,综合稳定裕度也提升了1.38%。分析发现,转子叶尖开缝能有效控制转子叶片表面流动分离,缓解叶尖通道堵塞,在所研究范围内,开缝位置越靠近尾缘,对静叶通道流场性能改善越明显,削弱气流分离的同时还能抑制气流沿叶高方向潜移,极大程度提高了压气机流场性能。  相似文献   

11.
不同叶尖间隙下的涡轮转子出口 三维流场测量   总被引:2,自引:0,他引:2  
采用圆锥四孔高频压力探针测量了某涡轮不同叶尖间隙下转子出口的三维时均流场.结果表明转子出口参数均呈现明显的周期特性.叶尖间隙对转子出口流动品质有较大影响;间隙大时,泄漏流显著,对应的机匣二次流动较弱;间隙小时,机匣附近的二次流动较强.泄漏流区域的速度低,对应的相对总压小,损失大;泄漏流导致气流亏转,对应的静压高,膨胀程度小于主流,增大间隙,膨胀比变小,涡轮做功能力下降.   相似文献   

12.
不同转速下跨声速轴流压气机内部流动失稳的机理   总被引:2,自引:1,他引:1  
以跨声速轴流压气机转子NASA Rotor 67为研究对象,采用数值模拟方法,开展100%、80%及60%转速下跨声速轴流压气机内部流动失稳触发机制的机理研究。数值结果与实验数据的对比分析表明:在3个转速下,数值总性能曲线的变化趋势与实验数据符合一致。通过压气机内部流场的详细分析,得出其基本流动机理。在3个转速下,随着压气机节流,叶顶泄漏涡(TLV)的起始位置逐渐向叶片前缘移动,叶顶泄漏涡也逐渐向相邻叶片压力面偏转,相比近峰值效率点,近失速点时在100%、80%以及60%转速下叶顶泄漏涡的偏转角度分别为3°、6°和9°。在100%和80%转速下,叶顶泄漏涡与激波相互作用所导致的堵塞是触发压气机内部流动失稳的机制,并且在80%转速下,叶顶泄漏涡发生破碎;而在60%转速下,泄漏涡在相邻叶片出现的叶顶前缘溢流(LESF)是触发压气机内部流动失稳的主要机制,叶片吸力面尾缘出现的小尺度附面层气流分离(BLFS)不是主要机制。   相似文献   

13.
转子叶顶间隙泄漏流轨迹前移的动力学机制   总被引:1,自引:1,他引:0  
为了揭示压气机转子节流时其叶顶间隙流动的演变趋势及其形成机理,选取某亚声速轴流压气机转子为研究对象,采用多通道非定常数值计算方法对其内部流场进行了全三维数值模拟.结果表明:随着压气机转子流量减少,主流轴向动量减小,而在叶顶间隙两侧压力梯度和二次泄漏流的共同作用下,叶顶间隙泄漏流的轴向动量却不断增大,导致叶顶间隙区域内泄漏流与主流的轴向动量比不断增大,从而推动叶顶间隙泄漏流与主流的交界面不断向上游移动,这意味着叶顶间隙泄漏流在叶顶通道内造成的流动阻塞区不断扩大,正是叶顶间隙泄漏流相对于主流的增强造成的叶顶流动阻塞区不断扩大最终导致了该压气机转子进入失速状态.  相似文献   

14.
对具有 3 .6 %相对叶顶间隙的涡轮叶栅进行了壁面流动显示和三维流场数值模拟 ,分析了大叶顶间隙涡轮叶栅的壁面流动特点 ,从数值模拟上特别对尾缘附近的壁面流动结构进行了详细讨论。实验与计算结果表明叶栅尾缘附近的流动是非常复杂的 ,同时由于叶顶间隙的存在 ,上下尾缘附近的壁面流谱明显不同  相似文献   

15.
向心涡轮内部流动数值模拟分析   总被引:3,自引:2,他引:1  
利用三维数值模拟方法对向心涡轮内部流动进行数值模拟,分析了岛型导叶的气动特点、通道中的二次流动和各个涡系的发展以及不同叶尖间隙对流动的影响。结果表明:在一定范围内岛型导叶对气流角变化不敏感;在靠近动叶进口处二次流动比较明显,流动比较复杂,而通道中各个涡系的演化发展都集中在靠近动叶吸力面一侧;随着的罩壳半径的减小,动叶叶尖处间隙流动逐渐增强;适量的间隙流动有利于改善通道顶部区域流动。   相似文献   

16.
机匣相对转动对涡轮叶顶间隙流动的影响   总被引:2,自引:0,他引:2  
机匣与叶片的相对转动是影响涡轮叶顶间隙流动的重要因素之一。对LISA 1.5级轴流涡轮内三维流动的数值计算结果表明:当叶片静止时,叶片顶部压力面静压增加,叶片顶部载荷增大。通过间隙的流量增加,同时吸力面侧在叶片前缘、叶片中部各形成一个间隙涡。叶片前缘间隙涡会迅速耗散,同时使得叶片中部形成的间隙涡维持在吸力边附近,上通道涡被排挤到间隙涡下方,导致动叶出口截面上、下通道涡形成的高损失区合并,影响范围增大。  相似文献   

17.
摘要:为了揭示对转压气机下游转子外伸激波对上游转子泄漏流的影响规律,针对上游转子叶顶间隙分别为0.2、0.5、0.8 mm的对转压气机开展了非定常数值模拟研究。研究发现:受下游转子外伸激波掠扫影响,上游转子尾缘附近压力面会形成弱压缩波,且随上游转子泄漏流增强而逐渐减弱;而该外伸激波在上游转子尾缘附近吸力面,会形成与型线切向相垂直的较强压缩波,且其位置基本不受叶顶间隙大小影响;外伸激波使上游转子尾缘附近吸、压力面压差增大,叶顶泄漏流增强,进而导致其损失增大;随着叶顶间隙增大,上游转子叶尖区弦长前半段压力波动的频率,由通道激波转为叶顶泄漏流主导,且呈现减小的趋势,而弦长后半段压力波动的频率主要由外伸激波主导,且基本不变。   相似文献   

18.
单转子轴流压气机不同状态下进出口三维时均流场   总被引:2,自引:1,他引:1  
用圆锥四孔高频压力探针测量了单转子轴流压气机不同流量状态下, 转子进出口三维时均流场。结果表明, 压气机转子进口流动沿周向呈现较强的周期性变化, 尤其在近失速状态, 叶片压力面侧总压和静压高, 吸力面侧总压和静压低, 而前缘附近轴向速度低、相对气流角大。   相似文献   

19.
叶片弯曲对叶顶间隙流动影响的实验研究   总被引:2,自引:0,他引:2  
详细测量了直叶栅与正、反弯叶栅叶顶间隙中分面以及叶栅前、后横截面内气动参数分布,并对壁面(包括上、下端壁与叶片表面)流场进行了墨迹显示。对比3 套叶栅的实验结果发现:叶片正弯削弱了泄漏流与端壁流道内横向二次流,泄漏涡与上通道涡合并,二次涡分离由整体分离转变为局部分离,既减少了相对漏气量又降低了掺混损失;叶片反弯加强了泄漏涡与上通道涡的相互作用,虽然使相对漏气量减少,但却增大了掺混损失。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号