首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 504 毫秒
1.
From the analysis of the United States Navy navigation satellite system (NNSS) positioning data of about 10000 passes, it is clearly found that polar ionospheric disturbance affects the positioning. The positioning error increases with increasing geomagnetic disturbance level (local K-index), and the pass number of position fixes decreases by one or two per day when the K-index is large. These effects may arise from the spatial gradients of electron density and/or the radio wave scattering due to well-developed ionospheric irregularities inherent to the disturbed auroral ionosphere  相似文献   

2.
Performance prediction for a detection system employing noncoherent integration is carried out for a chi-square family of fluctuating targets in K-distributed clutter plus noise. The detection performance for Swerling 11 targets in the K-distributed clutter plus noise is compared with that in exponentially correlated Rayleigh clutter. The results show that the performance prediction based on N pulses integrated in clutter plus noise using the K-distributed clutter model may be approximately equivalent to that using the exponentially correlated Rayleigh-distributed clutter model  相似文献   

3.
A solution is presented to the problem of finding the best set of K completely unmerged paths through a trellis with M i⩾K states at depth i in the trellis, i=0, 1, 2, . . ., N. Here, `best set' means that the sum of the metrics of all K paths in the set is minimized, and `completely unmerged' means that no two paths pass through a common state. The solution involves using the Viterbi algorithm on an expanded trellis. This result is then used to separate the tracks of K targets optimally in a simplified model of a multitarget radar system. The model includes measurement errors and false alarms, but it does not include the effects of missing detections or merged measurements  相似文献   

4.
The performance of the sampled matrix inversion (SMI) adaptive algorithm in colored noise is investigated using the Gram-Schmidt (GS) canceler as an analysis tool. Lower and upper bounds of average convergence are derived, indicating that average convergence slows as the input time samples become correlated. When the input samples are uncorrelated, the fastest SMI algorithm convergence occurs. When the input samples are correlated then the convergence bounds depend on the number of channels N, the number of samples per channels K , and the eigenvalues associated with K×K correlation matrix of the samples in a given channel. This matrix is assumed identical for all channels  相似文献   

5.
Performance results for the sidelobe level of a compressed pulse that has been preprocessed through an adaptive canceler are obtained. The adaptive canceler is implemented using the sampled matrix inversion algorithm. Because of finite sampling, the quiescent compressed pulse sidelobe levels are degraded due to the preprocessing of the main channel input data stream (the uncompressed pulse) through an adaptive canceler. It is shown that if N is the number of input canceler channels (main and auxiliaries) and K is the number of independent samples per channel, then K/N can be significantly greater than one in order to retain sidelobes that are close to the original quiescent sidelobe level (with no adaptive canceler). Also it is shown that the maximum level of degradation is independent of whether pulse compression occurs before or after the adaptive canceler if the uncompressed pulse is completely contained within the K samples that are used to calculate the canceler weights. This same analysis can be used to predict the canceler noise power level that is induced by having the desired signal present in the canceler weight calculation  相似文献   

6.
Adaptive fade margin is required to counter the severe but varying rain attenuation in Ka satellite communications. In searching for a suitable rain countermeasure, the effectiveness of the adaptive forward error control (AFEC) scheme is studied. Two AFEC schemes using convolutional codes and concatenated codes are proposed and their performance analyzed. The schemes can provide a progressively adaptive fade margin of 10.1 and 10.4 dB, respectively, in excess of the systems fixed fade margin. To improve the efficient use of shared resources of the system, an AFEC scheme using double coding is introduced, and its performance is analyzed. In this scheme a single codec is used repeatedly, and as a result the hardware cost is reduced and the utilization increased. The effective usable capacity of a conceptual AFEC resource sharing scheme using Golay double coding is also analyzed  相似文献   

7.
System aspects of mobile communication and position determination by satellite are described. Topics of discussion are the choice of frequency, type of modulation/multiple access and system design, and considering the effects of active and passive intermodulation and multipath interference. Communication performance and position determination analyses are conducted with respect to small-scale domestic mobile communication systems, where the satellite mobile transponder constitutes only a fraction of the otherwise fixed services C-band or Ku-band payload, and where the orbit position of the spare satellite(s) is dictated by considerations other than purely radio positioning. The system tradeoffs and arguments presented lead to a particular modulation/multiple access system, which provides high channel capacity, good ranging accuracy, and high resistance to multipath fading  相似文献   

8.
A method for multitarget tracking and initiating tracking in a cluttered environment is proposed. The algorithm uses a sliding window of length uT (T is the sampling time) to keep the measurement sequence at time k. Instead of solving a large problem, the entire set of targets and measurements is divided into several clusters so that a number of smaller problems are solved independently. When a set of measurements is received, a new set of data-association hypotheses is formed for all the measurements lying in the validation gates within each cluster from time K-u+1 to K. The probability of each track history is computed, and, choosing the largest of these histories, the target measurement is updated with an adaptive state estimator. A covariance-matching technique is used to improve the accuracy of the adaptive state estimator. In several examples, the algorithm successfully tracks targets over a wide range of conditions  相似文献   

9.
Aeronautical satellite communication experiments were conducted using a top-mounted high-gain antenna of the phased-array type. Slow fading of 3 to 4 dB in the L-band channel was observed when the wing direction coincides with the satellite direction, in contrast with the small fading observed in the cases where the aircraft wing is out of the beam pointing to the satellite  相似文献   

10.
Collapsing losses are computed for systems in which the peak return of K samples of noise plus one sample of signal-plus-noise are integrated over N looks. The statistical approach, collapsing losses, and an application are described. The peak integrator is found to have substantially lower collapsing losses than conventional systems in which the average, not the peak, is integrated  相似文献   

11.
Relevant to a Richian family of fluctuating targets with a composite background of sea-plus-land clutter, the performance prediction of a radar operating in near-coastal regions is elucidated by assuming noncoherent integration of the pulses. Considering the dominance of land clutter, a modified K-distributed statistic is indicated for the overall clutter envelope; and the corresponding probability of false alarm and probability of detection are deduced for fixed threshold detection (s) based on N pulses integrated in the presence of the sea-plus-land clutter and the noise. Even when the target offers a dominant scattered echo, the worst situations of the land clutter affecting the detection performance are indicated  相似文献   

12.
The world's first aeronautical satellite communication experiments, conducted at L-band frequencies using a commercial aircraft, are described. An airborne antenna with electronically steerable beam and communication equipment was installed in a B-747F freighter flying over transoceanic flight routes. The satellite used in these experiments is the Engineering Test Satellite-Five (ETS-V). During the test period, various experiments, such as antenna pattern measurements, transmission performances, and voice quality evaluation were conducted. As the airborne antenna is the key component for the aeronautical satellite communication system, emphasis has been placed on antenna characteristics. Its performance is found to be closely related to the fading characteristics in low-elevation areas and to transmission error performance  相似文献   

13.
The author analyzes the effects of phase errors on synthetic aperture radar (SAR). The theory is applied to the following question: how does the achievable resolution vary with the carrier frequency when optimum quadratic focus and/or optimum processing interval (synthetic aperture length) are used? Numerous related results are given, so that much of the material is tutorial. For phase errors corresponding to uncompensated motion, the best achievable RMS resolution with any phase error spectrum satisfies the derived equation. For motion-induced phase errors it is seen that resolution improves with increasing carrier frequency when the first term in the expression applies (e.g. for phase errors concentrated at low frequencies) and resolution is independent of carrier frequency when R δ/v/v is the smaller term (e.g. with broad band or high frequency phase errors)  相似文献   

14.
Uniform randomization of ties is required for defining distribution-free ranks of independent and identically distributed quantized samples. Formulas of rank probabilities are given and applied to radar detection under quantized video samples. For some detectors, and assuming Gaussian noise, the asymptotic loss L(q) is calculated versus the normalized quantization step q, and the loss L(q) is estimated by Monte Carlo simulations. Both of these resulted in monotonic functions of q (0<q<1.1) that are independent of the other parameters. Furthermore, L(q)≈L(q )⩽0.45 dB, as q<0.8. The quantization step q is normalized with respect to the noise standard deviation  相似文献   

15.
Nearly optimum quantization levels for multileveled quantizers in radar receivers and distributed-detection are calculated for preassigned false-alarm probability Q0 by maximizing the detection probability Qd after replacing both Q 0 and (1-Qd) by the saddlepoint approximations. Narrowband signals of random phase and with both fixed and Rayleigh-fading amplitudes in Gaussian noise are treated, and the loss in signal detectability incurred by quantization is estimated  相似文献   

16.
Optimal speckle reduction in polarimetric SAR imagery   总被引:9,自引:0,他引:9  
Speckle is a major cause of degradation in synthetic aperture radar (SAR) imagery. With the availability of fully polarimetric SAR data, it is possible to use the three complex elements (HH, HV, VV) of the polarimetric scattering matrix to reduce speckle. The optimal method for combining the elements of the scattering matrix to minimize image speckle is derived, and the solution is shown to be a polarimetric whitening filter (PWF). A simulation of spatially correlated, K-distributed, fully polarimetric clutter is then used to compare the PWF with other, suboptimal speckle-reduction methods. Target detection performance of the PWF, span, and single-channel |HH|2 detectors is compared with that of the optimal polarimetric detector (OPD). A novel, constant-false-alarm-rate (CFAR) detector (the adaptive PWF) is as a simple alternative to the OPD for detecting targets in clutter. This algorithm estimates the polarization covariance of the clutter, uses the covariance to construct the minimum-speckle image, and then tests for the presence of a target. An exact theoretical analysis of the adaptive PWF is presented; the algorithm is shown to have detection performance comparable with that of the OPD  相似文献   

17.
CFAR data fusion center with inhomogeneous receivers   总被引:1,自引:0,他引:1  
Detection systems with distributed sensors and data fusion are increasingly used by surveillance systems. A system formed by N inhomogeneous constant false alarm rate (CFAR) detectors (cell-averaging (CA) and ordered statistic (OS) CFAR detectors) is studied. A recursive formulation of an algorithm that permits a fixed level of false alarms in the data fusion center is presented, to set the optimum individual threshold levels in the CFAR receivers and the optimum `K out of N' decision rule in order to maximize the total probability of detection. The algorithm also considers receivers of different quality or with different communication channel qualities connecting them with the fusion center. This procedure has been applied to several hypothetical networks with distributed CA-CFAR and OS-CFAR receivers and for Rayleigh targets and interference, and it was seen that in general the fusion decision OR rule is not always the best  相似文献   

18.
The accuracy with which detection and false alarm probabilities can be estimated with a limited amount of measured radar data is addressed. A simple simulation method for estimating the statistical performance of a radar detection system is presented. Confidence limits and a rule of thumb for accuracy for the estimated probabilities are presented along with procedures for calculating them. It is concluded that the minimum value of N used in a detection radar signal simulation should be 10/PFA when the simple simulation method is used, where PFA is the probability of false alarm, and that a value closer to 100/P FA is preferable  相似文献   

19.
Data relay satellites are being developed to provide real-time data links between research satellites in low earth orbits and central data acquisition and processing facilities. Frequency assignments for data relay satellite links will be made in bands allocated internationally to the space research service. One of the bands which will be used lies between 14.5 and 15.35 GHz, where the space research service has had a frequency allocation as a secondary service since 1971. During the General World Administrative Radio Conference of the International Telecommunication Union, held in Geneva in 1979, a primary frequency allocation was made in the band 14.5-14.8 GHz to the fixed-satellite service, specifically for use by earth-to-space links of the broadcasting satellite service. The feasibility of shared band operation is evaluated between data relay satellite uplinks and broadcasting-satellite feeder links in the band 14.5-14.8 GHz. Relationships for predicting interference power levels are formulated, as functions of satellite separation and of earth station separation. Tradeoffs between satellite separation angle and earth station separation are explored, and conclusions are drawn regarding the feasibility of band sharing. Co-channel operation is demonstrated to be technically feasible for typical systems, provided appropriate separations are maintained.  相似文献   

20.
Discrete-time estimation and compensation are discussed as a solution to the problems encountered when disturbances are present and degrade the performance of continuous automatic control systems. The method described, under a mild set of conditions, allows the designer to locate the closed-loop system poles substantially anywhere and provide disturbance rejection as large as desired by increasing the dimensions of the disturbance estimator. This estimation/compensation scheme results in a gain characteristic, below some frequency (ωc ), with a slope of q×20 dB/decade. The value of q and ωc can be chosen by the designer, within the physical limitations of the problem, so that the system error resulting from either deterministic or stochastic disturbances is sufficiently reduced. The method has been investigated for use with known linear, time-invariant systems  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号