首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Performance prediction for a detection system employing noncoherent integration is carried out for a chi-square family of fluctuating targets in K-distributed clutter plus noise. The detection performance for Swerling 11 targets in the K-distributed clutter plus noise is compared with that in exponentially correlated Rayleigh clutter. The results show that the performance prediction based on N pulses integrated in clutter plus noise using the K-distributed clutter model may be approximately equivalent to that using the exponentially correlated Rayleigh-distributed clutter model  相似文献   

2.
Optimal speckle reduction in polarimetric SAR imagery   总被引:9,自引:0,他引:9  
Speckle is a major cause of degradation in synthetic aperture radar (SAR) imagery. With the availability of fully polarimetric SAR data, it is possible to use the three complex elements (HH, HV, VV) of the polarimetric scattering matrix to reduce speckle. The optimal method for combining the elements of the scattering matrix to minimize image speckle is derived, and the solution is shown to be a polarimetric whitening filter (PWF). A simulation of spatially correlated, K-distributed, fully polarimetric clutter is then used to compare the PWF with other, suboptimal speckle-reduction methods. Target detection performance of the PWF, span, and single-channel |HH|2 detectors is compared with that of the optimal polarimetric detector (OPD). A novel, constant-false-alarm-rate (CFAR) detector (the adaptive PWF) is as a simple alternative to the OPD for detecting targets in clutter. This algorithm estimates the polarization covariance of the clutter, uses the covariance to construct the minimum-speckle image, and then tests for the presence of a target. An exact theoretical analysis of the adaptive PWF is presented; the algorithm is shown to have detection performance comparable with that of the OPD  相似文献   

3.
A technique which uses maximum-likelihood estimates (MLEs) of target Doppler and target amplitude is developed for rejecting clutter residues. Multiple estimates are made and consistency checks are applied to the estimates. Simulation results indicate that for large clutter-to-noise ratios (C/N⩾55 dB) the probability of false alarm from clutter residues is reduced from 1.0 to below 0.01  相似文献   

4.
The accuracy with which detection and false alarm probabilities can be estimated with a limited amount of measured radar data is addressed. A simple simulation method for estimating the statistical performance of a radar detection system is presented. Confidence limits and a rule of thumb for accuracy for the estimated probabilities are presented along with procedures for calculating them. It is concluded that the minimum value of N used in a detection radar signal simulation should be 10/PFA when the simple simulation method is used, where PFA is the probability of false alarm, and that a value closer to 100/P FA is preferable  相似文献   

5.
The use of constant-false-alarm-rate (CFAR) techniques to keep false alarm rates at a suitable low level is reviewed. Radar resource management for clutter suppression, a novel approach for multifunction phased-array radar that can more effectively suppress clutter, is proposed. The results of a simulation study, which indicate the maximum permissible Pfa and the improvement of detection performance, demonstrate the effectiveness of resource management, especially when an all-neighbor filter is used  相似文献   

6.
The problem of distributed detection involving N sensors is considered. The configuration of sensors is serial in the sense that the Jth sensor decides using the decision it receives along with its own observation. When each sensor uses the Neyman-Pearson test, the probability of detection is maximized for a given probability of false alarm, at the Nth stage. With two sensors, the serial scheme has a performance better than or equal to the parallel fusion scheme analyzed in the literature. Numerical examples illustrate the global optimization by the selection of operating thresholds at the sensors  相似文献   

7.
Detection probability for partially correlated chi-square targets   总被引:1,自引:0,他引:1  
The probability of detection of the sum of N square-law-detected pulses is derived for the case where the signal fluctuation obeys chi-square statistics with four degrees of freedom. P. Swerling's (1960) case III and IV represent the cases where the signal is completely correlated and completely decorrelated, respectively, from pulse to pulse. An exact expression for probability of detection is derived for the condition of partial signal correlation. The results given are compared with the approximate technique commonly used to handle partial signal correlation  相似文献   

8.
Nearly optimum quantization levels for multileveled quantizers in radar receivers and distributed-detection are calculated for preassigned false-alarm probability Q0 by maximizing the detection probability Qd after replacing both Q 0 and (1-Qd) by the saddlepoint approximations. Narrowband signals of random phase and with both fixed and Rayleigh-fading amplitudes in Gaussian noise are treated, and the loss in signal detectability incurred by quantization is estimated  相似文献   

9.
Spatially distributed target detection in non-Gaussian clutter   总被引:3,自引:0,他引:3  
Two detection schemes for the detection of a spatially distributed, Doppler-shifted target in non-Gaussian clutter are developed. The non-Gaussian clutter is modeled as a spherically invariant random vector (SIRV) distribution. For the first detector, called the non-scatterer density dependent generalized likelihood ratio test (NSDD-GLRT), the detector takes the form of a sum of logarithms of identical functions of data from each individual range cell. It is shown under the clutter only hypothesis, that the detection statistic has the chi-square distribution so that the detector threshold is easily calculated for a given probability of false alarm PF. The detection probability PD is shown to be only a function of the signal-to-clutter power ratio (S/C)opt of the matched filter, the number of pulses N, the number of target range resolution cells J, the spikiness of the clutter determined by a parameter of an assumed underlying mixing distribution, and PF. For representative examples, it is shown that as N, J, or the clutter spikiness increases, detection performance improves. A second detector is developed which incorporates a priori knowledge of the spatial scatterer density. This detector is called the scatterer density dependent GLRT (SDD-GLRT) and is shown for a representative case to improve significantly the detection performance of a sparsely distributed target relative to the performance of the NSDD-GLRT and to be robust for a moderate mismatch of the expected number of scatterers. For both the NSDD-GLRT and SDD-GLRT, the detectors have the constant false-alarm rate (CFAR) property that PF is independent of the underlying mixing distribution of the clutter, the clutter covariance matrix, and the steering vector of the desired signal  相似文献   

10.
A previous analysis of order-statistics constant-false-alarm-rate (OS-CFAR) radar receiving a single pulse from a Rayleigh fluctuating target in a Rayleigh background is extended to a Rayleigh-plus-dominant target. The analysis includes effects of a multitarget environment. A detailed comparison of OS-CFAR, cell-averaging (CA) CFAR, and censored CA-CFAR is provided for a Rayleigh target in the presence of strongly interfering targets. The false-alarm analysis of OS-CFAR is extended to the more general case of a Weibull background. The deterioration of the CFAR property of OS as the shape factor, C, of a Weibull probability density function changes from Rayleigh (C=2) to a longer-tailed one (C<2) is evaluated. The analytic comparison between CA-CFAR and OS-CFAR is extended to an integration of pulses reflected from a Swerling II target. The OS-CFAR performance (with and without interfering targets) yields an integral equation that is solved numerically  相似文献   

11.
A method for estimating parameters of K-distributed clutter   总被引:1,自引:0,他引:1  
A method for estimating the parameters of K-distributed clutter when the available sample size of the data is limited is proposed. In this method, the arithmetic mean and geometric mean of the given data are used to estimate the model parameters. Expressions characterizing the performance of the proposed estimator are presented, along with some simulation results. For spiky clutter, simulations show that parameter estimates obtained from the arithmetic and geometric mean are approximately equal to the numerically evaluated maximum-likelihood (ML) estimates. The method is also used to estimate the parameter of the Weibull density  相似文献   

12.
The authors develop the theory of CA-CFAR (cell-averaging constant false-alarm rate) detection using multiple sensors and data fusion, where detection decisions are transmitted from each CA-CFAR detector to the data fusion center. The overall decision is obtained at the data fusion center based on some k out of n fusion rule. For a Swerling target model I embedded in white Gaussian noise of unknown level, the authors obtain the optimum threshold multipliers of the individual detectors. At the data fusion center, they derive an expression for the overall probability of detection while the overall probability of false alarm is maintained at the desired value for the given fusion rules. An example is presented showing numerical results  相似文献   

13.
Radar Detection in Weibull Clutter   总被引:1,自引:0,他引:1  
Radar detection in Weibull clutter is examined from a statistical detection viewpoint. Weibull clutter parameters are determined and related to measured values of land and sea clutter. Optimum performance in Weibull clutter is determined, and practical receivers that approach this performance are identified. Receiver performance in Rayleigh, log-normal, and Weibull clutter is evaluated and compared.  相似文献   

14.
The probability of detecting either a Swerling 1 or Swerling 2 target immersed in both Rayleigh-distributed noise and log-normally distributed clutter is calculated. Results are presented which demonstrate the effect of noise-to-clutter ratio, signal-to-noise ratio, and number of pulses integrated on the detection statistics.  相似文献   

15.
The false-alarm and detection probabilities of a receiver summing M independent outputs of a linear detector are calculated by numerical saddlepoint integration. The saddlepoint approximation is also considered. Both constant-amplitude and Rayleigh-fading signals are treated, and the relative efficiency of the quadratic and the linear detectors for these is calculated for a broad range of values of M . The numerical integration method is the more efficient, the smaller the false-alarm probability or the false-dismissal probability, that is, under just those conditions for which the terms in the Gram-Charlier series oscillate most violently and the series becomes least reliable. The simpler saddlepoint approximation yields values that in those same regions have been found close enough to the exact probabilities to be adequate for most engineering purposes. The larger the number M of samples, the more efficient methods are  相似文献   

16.
Both the method of saddlepoint integration and its associated saddlepoint approximation are applied to calculating the probability of detecting correlated Rayleigh-fading signals in Gaussian noise by means of a detector that integrates M samples of the output of a quadratic rectifier. The quadrature components of the signal samples are modeled as an autoregressive moving-average process, and specific results are exhibited for a first-order Markov process. By these methods the fluctuation loss can be computed for much larger values of M and for larger values of the detection probability than previously. Values calculated by the saddlepoint approximation prove to be close enough to the exact values to be useful over a broad range of signal parameters  相似文献   

17.
Frequency-Agile Radar Signal Processing   总被引:1,自引:0,他引:1  
Modern radars may incorporate pulse-to-pulse carrier frequency modulation to increase probability of detection, to reduce Vulnerability to jamming, and to reduce probability of interception. However, if coherent processing is used for clutter rejection, the frequency of N consecutive pulses must be held constant for N-pulse clutter cancellation or Doppler filtering. If M pulses are transmitted during the time the antenna illuminates a target, there are M/N coherently integrated echoes available for noncoherent integration in the computer or the operator's display to further improve the signal-to-noise ratio (SNR). In this paper, analytical and simulation methods are employed to determine the balance between coherent and noncoherent integration that yields the greatest SNR improvement. Attention is focused upon a model using peak selection of fast Fourier transform (FFT) Doppler channels and is compared to a reference model involving only a single Doppler channel. Curves of detectable SNR as a function of M and N are presented for both models.  相似文献   

18.
An analysis of the probability of target detection for a clutter map CFAR using digital exponential filtering has been performed. General performance equations are derived. The probability of detection versus signal-to-noise ratio is plotted for a false alarm probability of 1.E-06 for several weight values. The CFAR loss is plotted for a detection probability of 0.9 and false alarm probabilities of 1.E-06 and 1.E-08.  相似文献   

19.
The authors present a series solution using Hermite polynomials to the long-standing problem of computing the probability P that positive definite noncentral quadratic form d(x) of a Gaussian random vector xR satisfies d( x)⩽r2 for any given rR. This problem has wide applications in radar, tracking, air traffic control, etc. The fast-converging series solution presented is very accurate and can be performed rapidly using the recursion relations for Hermite polynomials  相似文献   

20.
Cascaded detector for multiple high-PRF pulse Doppler radars   总被引:1,自引:0,他引:1  
A postdetection design methodology for a multiple high-pulse-repetition frequency (PRF) pulse Doppler radar has been developed. The postdetection processor consists of an M out of N detector where range and target ambiguities are resolved, followed by a square-law detector which enhances the minimum signal-to-noise (S/N) power-ratio per pulse burst performance. For given probabilities of false alarm and detection, formulas are derived from which the three thresholds associated with the cascaded detector can be found. Fundamental tradeoffs between the minimum S/N required, number of ghosts, and the number of operations (NOPs) that the cascaded detector must perform are identified. It is shown that the NOPs and the number of ghosts increase and the minimum S/N required decreases as the binary M out of N detector passes more detections to the square-law detector  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号