首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王兴隆  石宗北  陈仔燕 《航空学报》2021,42(7):324715-324715
研究空中交通网络的结构特征是理解网络性质的重要手段。从局部角度出发,以构成空中交通网络的子图结构为研究对象,对其模体特性进行识别。通过对子图浓度在外界扰动下的变化情况进行分析,提出子图结构韧性概念以表征网络拓扑结构的动态演化规律。以华东地区空中交通网络为例,对低阶子图结构进行了模体特性识别,并对不同扰动下子图结构韧性的变化情况进行评估。实证结果表明,子图结构的模体特性符合空中交通网络的实际连通度需求;在网络受扰动及恢复过程中,子图相对浓度较为稳定,子图结构韧性和网络宏观结构变化之间较为一致。对于揭示节点间连接的偏好及航路结构合理性,网络受扰动及恢复过程背后的底层机制,网络整体与局部结构之间的关系等有着一定的研究意义。  相似文献   

2.
以2003—2006年国际航空旅客运输量和流向为数据构建,通过可视化软件和复杂网络的理论和方法,对以国家/地区为节点所组成的国际航空客运网络结构进行研究。以平均路径长度、簇系数、度分布和中心性等网络结构特征指标为依据,分析了国际航空客运网络结构特点和中国航空客运在网络结构中的结构特征。  相似文献   

3.
Robustness of transportation networks is one of the major challenges of the 21st century. This paper investigates the resilience of global air transportation from a complex network point of view, with focus on attacking strategies in the airport network, i.e., to remove airports from the sys-tem and see what could affect the air traffic system from a passenger's perspective. Specifically, we identify commonalities and differences between several robustness measures and attacking strate-gies, proposing a novel notion of functional robustness: unaffected passengers with rerouting. We apply twelve attacking strategies to the worldwide airport network with three weights, and eval-uate three robustness measures. We find that degree and Bonacich based attacks harm passenger weighted network most. Our evaluation is geared toward a unified view on air transportation net-work attack and serves as a foundation on how to develop effective mitigation strategies.  相似文献   

4.
Identifying vital edges in Chinese air route network via memetic algorithm   总被引:1,自引:0,他引:1  
Due to rapid development in the past decade, air transportation system has attracted considerable research attention from diverse communities. While most of the previous studies focused on airline networks, here we systematically explore the robustness of the Chinese air route network, and identify the vital edges which form the backbone of Chinese air transportation system. Specifically, we employ a memetic algorithm to minimize the network robustness after removing certain edges, and hence the solution of this model is the set of vital edges. Counterintuitively, our results show that the most vital edges are not necessarily the edges of the highest topological importance, for which we provide an extensive explanation from the microscope view. Our findings also offer new insights to understanding and optimizing other real-world network systems.  相似文献   

5.
空中交通相依网络的脆弱性研究   总被引:4,自引:3,他引:1  
王兴隆  潘维煌  赵末 《航空学报》2018,39(12):322235-322235
机场、航路和管制扇区构成空中交通相依网络,节点在受到扰动时,网络运输性能下降,引发网络脆弱性。提出一种空中交通相依网络脆弱性的度量方法,首先构建机场网络、航路网络和管制扇区网络3个层网络,基于空中交通管理规则与层网络间的逻辑连接关系,建立空中交通相依网络模型。在随机扰动和蓄意扰动节点两种不同失效模式下,采用最大连通度和结构熵两个指标,并给出了相应算法,分析相依网络的结构脆弱性;创建流量熵和交通流损失比指标,设计了相应算法,研究相依网络的功能脆弱性。研究结果表明,随机扰动对空中交通相依网络影响更大;网络的结构脆弱源与功能脆弱源是机场网络;网络的脆弱性与层网络间的连接方式和层网络的交通量不匹配有关。  相似文献   

6.
《中国航空学报》2022,35(9):1-18
As an indispensable component of the emerging 6G networks, Space-Air-Ground Integrated Networks (SAGINs) are envisioned to provide ubiquitous network connectivity and services by integrating satellite networks, aerial networks, and terrestrial networks. In 6G SAGINs, a wide variety of network services with the features of diverse requirements, complex mobility, and multi-dimensional resources will pose great challenges to service provisioning, which urges the development of service-oriented SAGINs. In this paper, we conduct a comprehensive review of 6G SAGINs from a new perspective of service-oriented network. First, we present the requirements of service-oriented networks, and then propose a service-oriented SAGINs management architecture. Two categories of critical technologies are presented and discussed, i.e., heterogeneous resource orchestration technologies and the cloud-edge synergy technologies, which facilitate the interoperability of different network segments and cooperatively orchestrate heterogeneous resources across different domains, according to the service features and requirements. In addition, the potential future research directions are also presented and discussed.  相似文献   

7.
李昂  聂党民  温祥西  韩宝华  曾裕景 《航空学报》2021,42(9):324726-324726
动态、准确的管制系统运行态势预测是航空运输系统各相关单位开展协同决策的关键基础。基于航空器间的冲突情况、管制员对航空器的管控情况以及管制移交情况构建管制-飞行状态相依网络,探究、分析其演化规律,采用相关性分析和主成分分析证明了所选5项指标的合理性。设置自由飞行和固定航线飞行两种仿真场景,通过计算平均节点度、平均点强等拓扑指标的最大李雅普诺夫指数证明各时间序列均具有混沌特性,选择长短期记忆(LSTM)人工神经网络方法对各时间序列的演化规律进行预测,并与其他预测算法进行对比。仿真结果表明LSTM算法能对管制系统的演化过程进行有效的预测,且预测精度高于贝叶斯算法和支持向量机算法;在自由飞行条件下,5项指标的预测误差绝大部分在20%以内,固定航线飞行的预测效果优于自由飞行。  相似文献   

8.
Airspace safety and airport capacity are two key challenges to sustain the growth in Air Transportation. In this paper, we model the Air Transportation Network as two sub-networks of airspace and airports, such that the safety and capacity of the overall Air Transportation network emerge from the interaction between the two. We propose a safety-capacity trade-off approach,using a computational framework, where the two networks can inter-act and the trade-off between capacity and safety in an Air Transport Network can be established. The framework comprise of an evolutionary computation based air traffic scenario generation using a flow capacity estimation module(for capacity), Collision risk estimation module(for safety) and an air traffic simulation module(for evaluation). The proposed methodology to evolve air traffic scenarios such that it minimizes collision risk for given capacity estimation was tested on two different air transport network topologies(random and small-world) with the same number of airports. Experimental results indicate that though airspace collision risk increases almost linearly with the increasing flow(flow intensity) in the corresponding airport network, the critical flow depend on the underlying network configuration. It was also found that, in general, the capacity upper bound depends not only on the connectivity among airports and their individual performances but also the configuration of waypoints and mid-air interactions among conflicts. Results also show that airport network can accommodate more traffic in terms of capacity but the corresponding airspace network cannot accommodate the resulting traffic flow due to the bounds on collision risk.  相似文献   

9.
《中国航空学报》2019,32(12):2694-2705
Resilience is the ability of a system to withstand and stay operational in the face of an unexpected disturbance or unpredicted changes. Recent studies on air transport system resilience focus on topology characteristics after the disturbance and measure the robustness of the network with respect to connectivity. The dynamic processes occurring at the node and link levels are often ignored. Here we analyze airport network resilience by considering both structural and dynamical aspects. We develop a simulation model to study the operational performance of the air transport system when airports operate at degraded capacity rather than completely shutting down. Our analyses show that the system deteriorates soon after disruptive events occur but returns to an acceptable level after a period of time. Static resilience of the airport network is captured by a phase transition in which a small change to airport capacity will result in a sharp change in system punctuality. After the phase transition point, decreasing airport capacity has little impact on system performance. Critical airports which have significant influence on the performance of whole system are identified, and we find that some of these cannot be detected based on the analysis of network structural indicators alone. Our work shows that air transport system’s resilience can be well understood by combining network science and operational dynamics.  相似文献   

10.
《中国航空学报》2020,33(2):634-663
The determination of optimal aerial transport networks and their associated flight frequencies is crucial for the strategic planning of airlines, as well as for carrying out market research, to establish target markets, and for aircraft and crew rostering. In addition, optimum airplane types for the selected networks are crucial to improve revenue and to provide reduced operating costs. The present study proposes an innovative approach to determine the optimal aerial transport network simultaneously with the determination of the optimum fleet for that network, composed of three types of airplanes (network and vehicle integrated design). The network profit is maximized. The passenger’s demands between the airports are determined via a gravitational model. An embedded linear programming solution is responsible for obtaining potential optimal network configurations. The optimum fleet combination is determined from a database of candidate aircraft designs via genetic algorithm. A truly realistic airplane representation is made possible thanks to accurate surrogate models for engine and aerodynamics is adopted. An accurate engine deck encompassing a compression map and an innovative engine weight calculation besides an aerodynamical artificial neural network module enable a high degree of accuracy for the mission analysis. The proposed methodology is applied to obtain the optimum network comprised of twenty main Brazilian airports and corresponding fleet.  相似文献   

11.
《中国航空学报》2016,(2):512-519
Air transport network, or airport network, is a complex network involving numerous airports. Effective management of the air transport system requires an in-depth understanding of the roles of airports in the network. Whereas knowledge on air transport network properties has been improved greatly, methods to find critical airports in the network are still lacking. In this paper, we present methods to investigate network properties and to identify critical airports in the network. A novel network model is proposed with airports as nodes and the correlations between traffic flow of airports as edges. Spectral clustering algorithm is developed to classify airports. Spatial distribution characteristics and intraclass correlation of different categories of airports are carefully analyzed. The analyses based on the fluctuation trend of distance-correlation and power spectrum of time series are performed to examine the self-organized criticality of the network. The results indicate that there is one category of airports which dominates the self-organized critical state of the network. Six airports in this category are found to be the most important ones in the Chinese air transport network. The flights delay occurred in these six airports can propagate to the other airports, having huge impact on the operation characteristics of the entire network. The methods proposed here taking traffic dynamics into account are capable of identifying critical airports in the whole air transport network.  相似文献   

12.
Airborne networks(ANs) are special types of ad hoc networks that can be used to enhance situational awareness, flight coordination and flight efficiency in civil and military aviation.Compared to ground networks, ANs have some unique attributes including high node mobility, frequent topology changes, mechanical and aerodynamic constrains, strict safety requirements and harsh communication environment.Thus, the performance of conventional transmission control protocol(TCP) will be dramatically degraded in ANs.Aircraft commonly have two or more heterogeneous network interfaces which offer an opportunity to form multiple communication paths between any two nodes in ANs.To satisfy the communication requirements in ANs, we propose aeronautical multipath transport protocol(Aero MTP) for ANs, which effectively utilizes the available bandwidth and diversity provided by heterogeneous wireless paths.Aero MTP uses fountain codes as forward error correction(FEC) codes to recover from data loss and deploys a TCP-friendly rate-based congestion control mechanism for each path.Moreover, we design a packet allocation algorithm based on optimization to minimize the delivery time of blocks.The performance of Aero MTP is evaluated through OMNe T++ simulations under a variety of test scenarios.Simulations demonstrate that Aero MTP is of great potential to be applied to ANs.  相似文献   

13.
With the rapid development of air transportation, network service ability has attracted a lot of attention in academe. Aiming to improve the throughput of the air route network(ARN), we propose an effective local dynamic routing strategy in this paper. Several factors, such as the routing distance, the geographical distance and the real-time local traffic, are taken into consideration.When the ARN is in the normal free-flow state, the proposed strategy can recover the shortest path routing(SPR) strategy. When the ARN undergoes congestion, the proposed strategy changes the paths of flights based on the real-time local traffic information. The throughput of the Chinese air route network(CARN) is evaluated. Results confirm that the proposed strategy can significantly improve the throughput of CARN. Meanwhile, the increase in the average flying distance and time is tiny. Results also indicate the importance of the distance related factors in a routing strategy designed for the ARN.  相似文献   

14.
航天测控通信网自建成以来,整体运行较为稳定,但在网络安全方面也暴露出了一些问题,为研究和解决目前航天测控通信网中存在的网络安全问题, 在分析TCP/IP (Transmission ControlProtocol/Internet Protocol,传输控制协议/互联网协议)分层协议基本原理的基础上,研究了IP网数据链路层、网络层和传输层的协议漏洞及常见攻击方法,详细介绍了当前航天测控通信网的网络安全部署情况,根据网络现状分别对航天测控通信网上数据链路层、网络层和传输层存在的安全问题进行了纵向分析,针对分析出的各类安全问题,进一步给出了有效的防御措施和防护方法。最后,探讨提出了一套航天测控通信网配置维护管理系统的设计方案,通过建立设备配置信息库、检查信息记录库及网络故障库等,实现了对航天测控通信网安全稳定运行的有效管理。  相似文献   

15.
基于功能脆弱性的空中交通相依网络流量分配   总被引:2,自引:2,他引:0  
王兴隆  齐雁楠  潘维煌 《航空学报》2020,41(4):323479-323479
依据空中交通管理与航班运行规则,采用复杂网络理论构建由机场、航路与管制扇区组成的相依网络模型,建立不同扰动策略的影响规则,提出以网络流量熵和交通流损失比变化率为指标识别网络功能脆弱性。并以网络总流量熵最小为目标,建立基于改进遗传算法的网络流量协调分配策略,以降低空中交通相依网络的脆弱性。以民航华北地区空域为原型,发现了其相依网络脆弱性表现规律和脆弱源,采用遗传算法求解网络流量分配方案,优化结果降低了网络总熵值和功能脆弱性,其中机场网络流量分配后效果最为显著,验证了方法的有效性,研究结果可为空中流量管理决策提供一定的理论支撑。  相似文献   

16.
Robustness of complex networks has been studied for decades,with a particular focus on network attack.Research on network repair,on the other hand,has been conducted only very lately,given the even higher complexity and absence of an effective evaluation metric.A recently proposed network repair strategy is self-healing,which aims to repair networks for larger compo nents at a low cost only with local information.In this paper,we discuss the effectiveness and effi ciency of self-healing,which limits network repair to be a multi-objective optimization problem and makes it difficult to measure its optimality.This leads us to a new network repair evaluation metric.Since the time complexity of the computation is very high,we devise a greedy ranking strategy.Evaluations on both real-world and random networks show the effectiveness of our new metric and repair strategy.Our study contributes to optimal network repair algorithms and provides a gold standard for future studies on network repair.  相似文献   

17.
钱宇  龙涛 《航空工程进展》2022,13(3):171-178
起飞超轮速严重威胁飞行安全,为了有效评估运输飞机起飞时在不确定性因素影响下的超轮速风险水平,提出一种基于云模型和贝叶斯网络的评估模型。选取抬轮速度、总重、低压转子转速、抬轮率、抬轮时机、升降舵控制量、风的分量、总温8个指标,建立超轮速风险指标体系;运用基于启发式高斯云变换算法和正向高斯云算法的云模型,实现超轮速风险等级...  相似文献   

18.
空中交通流运行的安全性和成本取决于航路网络结构。基于节点度实现航路网络枢纽节点和干线节点分层,利用全局耦合生成主干网络,运用距离连接概率实现干线节点社区化,采用连接概率生成社区网络;采用DBSCAN聚类算法,基于角度和距离实现航路网络优化;以中国大陆空域为例,实现了主干航路网络和局部干线航路网络的生成及优化,验证了方法的可行性。在与相关研究对比,基于节点度的枢纽节点选取更加客观合理,所构建的分层航路网络结构符合机场点的分布特性,采用DBSCAN聚类算法优化效率明显提高。  相似文献   

19.
张涛  张军 《航空学报》2007,28(4):922-929
 星间链路切换将严重影响卫星网络的通信性能,需要对切换链路加以保护,这方面的研究目前还很欠缺。为此,给出一种新颖的星间链路切换保护(ISLHP)算法,该算法可同时生成业务路径和备份路径,且具有最小的综合费用(包括备份费用和业务费用)。算法采用本地链路保护,为星间链路切换提供快速恢复,并利用星间链路切换的可预测性和备份资源的可共用性,通过降低需要保护的链路数,减少闲置的备份资源,来提高网络资源的利用率。仿真结果表明:该算法具有切换恢复时间短,网络资源利用率高等优点。  相似文献   

20.
李思平  周耀明 《航空学报》2021,42(6):324569-324569
新冠肺炎疫情给世界航空网络的连通性造成重大影响,网络的通达程度明显降低。为了研究中国内地的航空网络对外连通性在疫情影响下的变化,提出对外连通效率这一评价指标,并根据国内外疫情爆发不同阶段的特点采用不同的链路删除规则进行分析。研究结果表明:在疫情爆发前期,因许多国家对中国内地旅客采取入境限制措施,中国内地的航空网络对外连通效率与疫情前相比下降率最大达到39.8%,同等情形下,禁止入境措施对中国内地的对外连通性影响比停飞直航大将近一个数量级,而这两种限制措施造成的影响在不同国家间的横向差异性也巨大。此外,一些与中国内地不存在直航的国家如果采取限制入境措施,也会对中国内地的对外连通性产生很大影响。在疫情爆发中后期,全球的航线连接缩减并未对中国内地的航空对外连通性产生明显影响,中国国际航线间的连通替代关系大大提升了航空网络在此类极端情形下的鲁棒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号