首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The precession of Saturn under the effect of the gravity of the Sun, Jupiter and planet’s satellites has been investigated. Saturn is considered to be an axisymmetric (A = B) solid body close to the dynamically spherical one. The orbits of Saturn and Jupiter are considered to be Keplerian ellipses in the inertial coordinate system. It has been shown that the entire set of small parameters of the problem can be reduced to two independent parameters. The averaged Hamiltonian function of the problem and the integrals of evolutionary equations are obtained disregarding the effect of satellites. Using the small parameter method, the expressions for the precession frequency and the nutation angle of the planet’s axis of rotation caused by the gravity of the Sun and Jupiter are obtained. Considering the planet with satellites as a whole preceding around the normal to the unmovable plane of Saturn’s orbit, the satellites effect on the Saturn rotation is taken into account via the corrections in the formula for the undisturbed precession frequency. The satellites are shown to have no effect on the nutation angle (in the framework of the accepted model), and the disturbances from Jupiter to make the main contribution to the nutation angle evolution. The effect of Jupiter on the nutation angle and the precession period is described with regard to the attraction of satellites.  相似文献   

2.
张巍  刘林 《宇航学报》2008,29(6):1733-1738
采用类似对地球岁差章动的处理方法,讨论月球物理天平动对月心赤道坐标系 以及月球卫星轨道的影响。在对月球物理天平动的分析表达式与高精度数值历表进行比较的 基础上,给出了相应的月球引力位的变化及相应的坐标系附加摄动解,清楚地表明了对月球 卫星轨道影响的规律。所获结果与数值解进行了比对,证实了从定性和定量两个方面来看本 文的讨论都是有意义的,从而表明月球物理天平动分析解的简单表达式在某些问题中(特别 是定轨和预报)是有实用价值的,而且在建立轨道摄动分析解时,无需像地球卫星那样,去 引进混合形式的轨道坐标系,采用历元月心平赤道坐标系即可。最终表明:无论是采用数值 法定轨和预报还是分析法定轨和预报,均可采用统一的月心平赤道坐标系,这可避免一些不 必要的坐标转换。  相似文献   

3.
近距离航天器相对轨道的鲁棒自适应控制   总被引:1,自引:1,他引:0  
针对近距离航天器的相对轨道提出了一种鲁棒自适应控制律。在追踪星本体坐标系中考虑航天器的相对运动。首先,在转动惯量未知的情形下提出了自适应控制律,保证系统的全局渐近稳定性。其次,将两星地心引力加速度之差作为干扰加速度,并假设干扰有未知上界,对自适应控制律进行修正,提出了鲁棒自适应律,使得系统是全局一致最终有界稳定的。控制律的设计不需要绝对轨道信息,适用于任意轨道。对航天器编队飞行和空间交会两种情形分别进行了仿真分析,结果表明所设计的控制律是合理有效的。  相似文献   

4.
The problem of planar motions of a dumbbell-like body of variable length in a central field of Newtonian attraction is considered both in the exact formulation and in satellite approximation. In the satellite approximation the true anomaly of the center of mass is used as an independent variable, which has allowed us to represent the equation of planar oscillations of the dumbbell in the form similar to the Beletskii equation. Some exact solutions to the inverse problem are given both in the complete formulation and in satellite approximation. Under an assumption of small orbit eccentricity and amplitude of the dumbbell vibrations the conditions of existence are found for families of almost periodic motions and splitting separatrices. The phenomena of alternation of regular and chaotic motions are established numerically, as well as chaos suppression with increasing frequency of vibrations. Using the method of averaging the stabilization of tangent equilibria is proved to be impossible.  相似文献   

5.
弹道导弹主动段扰动引力的一种逼近算法   总被引:2,自引:0,他引:2  
弹道导弹扰动引力的计算量非常大,目前的弹载计算机因计算速度限制,是不可能实现计算的,必须采用快速的扰动引力逼近算法。针对地面司托克斯积分方法等方法计算扰动引力的不足,提出了利用重力线求解重力的一种方法,并用该方法计算标准弹道附近的扰动引力,作为实际弹道扰动引力的逼近准备数据。给出了弹道主动段扰动引力的BP-神经网络逼近算法,并通过算例证明扰动引力的神经网络逼近是可行的。  相似文献   

6.
嫦娥三号探测器连续姿控的轨道动力学模型补偿及实现   总被引:1,自引:0,他引:1  
针对嫦娥三号探测器的连续姿控喷气对飞行轨道产生的扰动影响,在精密定轨中建立了经验力补偿模型,并使用最小二乘估计算法计算经验力模型参数与探测器轨道。通过重叠弧段轨道精度评估法对该模型补偿效果进行了验证,结果显示,定轨预报的星历误差以及拟合残差均有所改善,特别是环月轨道的定轨精度由百米量级提高到十米量级。  相似文献   

7.
The problem of selecting quasi-synchronous orbits of a spacecraft around Phobos is considered. These quasi-synchronous orbits are far (with respect to the Hill’s sphere) quasi-satellite orbits with retrograde rotation in the restricted three body problem. The orbit should pass through a given point at a specified time instant. It should also possess a property of minimum distance from the Phobos surface at every passage above the region of planned landing. The equations of dynamics are represented in the form describing the orbit as a combination of motions in two drifting ellipses, inner and outer ellipses. The center of the outer ellipse is located on the inner ellipse. A formula is derived that relates averaged values of half-axes of the inner and outer ellipses. It is used for construction of the first approximation of numerically designed orbit, which makes it possible to simplify and speed up the computing process. The tables of initial conditions obtained as a result of calculations are presented.  相似文献   

8.
The results of determination of the uncontrolled attitude motion of the Foton-12 satellite (placed in orbit on September 9, 1999, terminated its flight on September 24, 1999) are presented. The determination was carried out by the onboard measurement data of the Earth's magnetic field strength vector. Intervals with a duration of several hours were selected from data covering almost the entire flight. On each such interval the data were processed simultaneously using the least squares method by integrating the satellite's equations of motion with respect to the center of mass. The initial conditions of motion and the parameters of the mathematical model employed were estimated in processing. The results obtained provided for a complete representation of the satellite's motion during the flight. This motion, beginning with a small angular velocity, gradually sped up. The growth of the component of the angular velocity with respect to the longitudinal axis of the satellite was particularly strong. During the first several days of the flight this component increased virtually after every passage through the orbit's perigee. As the satellite's angular velocity increased, its motion became more and more similar to the regular Euler precession of an axisymmetric rigid body. In the last several days of flight the satellite's angular velocity with respect to its longitudinal axis was about 1 deg/s and the projection of the angular velocity onto the plane perpendicular to this axis had a magnitude of approximately 0.15 deg/s. The deviation of the longitudinal axis from the normal to the orbit plane did not exceed 60°. The knowledge of the attitude motion of the satellite allowed us to determine the quasi-steady microacceleration component onboard it at the locations of the technological and scientific equipment.  相似文献   

9.
刘勇  刘磊  曹鹏飞  张尧 《宇航学报》2022,43(11):1444-1453
针对自由返回轨道求解过程中地心轨道类型变化造成的B平面参数方法计算失败问题,提出一种基于P平面参数的自由返回轨道快速设计方法。首先,基于轨道半通径参数的普适性,给出了不同轨道类型的P平面参数定义,建立了以P平面参数为求解目标量的自由返回轨道求解模型。其次,给出了基于P平面参数的自由返回轨道快速设计方法,在构建的瞬时地月惯性系下,以平面双二体自由返回轨道作为初值,实现了高精度力模型下的自由返回轨道快速求解。对8种构型自由返回轨道的设计结果表明,P平面参数具有类似于B平面参数的大收敛域,且有效解决了轨道类型变化对计算的影响,可直接应用于中国后续月球探测任务轨道设计。  相似文献   

10.
对影响GPS卫星轨道的主要摄动量,即地球势函数J2项对GPS卫星轨道的影响作出了定量分析,为我国建立自己的局部测控网获取精密星历提供依据。  相似文献   

11.
We present the resutls of a prompt determination of the uncontrolled attitude motion of the Foton M-2 satellite, which was in orbit from May 31 to June 16, 2005. The data of onboard measurements of the angular velocity vector were used for this determination. The measurement sessions were carried out once a day, each lasting 83 min. Upon terminating a session, the data were transmitted to the ground to be processed using the least squares method and integrating the equations of motion of the satellite with respect to its center of mass. As a result of processing, the initial conditions of motion during a session were estimated, as well as parameters of the mathematical model used. The satellite’s actual motion is determined for 12 such sessions. The results obtained in flight completely described the satellite’s motion. This motion, having begun with a small angular velocity, gradually became faster, and in two days became close to the regular Euler precession of an axisymmetric solid body. On June 14, 2005 the angular velocity of the satellite with respect to its longitudinal axis was approximately 1.3 degrees per second, and the angular velocity projection onto a plane perpendicular to this axis had a magnitude of about 0.11 degrees per second. The results obtained are consistent with more precise results obtained later by processing the data on the Earth’s magnetic field measured on the same satellite, and they complement the latter in determination of the motion in the concluding segment of the flight, when no magnetic measurements were performed.  相似文献   

12.
Vil'ke  V. G.  Shatina  A. V. 《Cosmic Research》2001,39(3):295-302
A model of a binary planet, consisting of a material point of small mass and a deformable viscoelastic sphere, is suggested. The center of mass of the binary planet moves in the gravitational field of a central body in the plane, which contains planets forming the binary planet. A deformable spherical planet rotates around the axis orthogonal to the plane of planetary motion. Planet deformations are described by the linear theory of viscoelasticity. It is shown that with an appropriate approximation of the gravitational potential, there is a class of quasicircular orbits, when the eccentricities of an orbit of the center of mass of a binary planet and an orbit, describing mutual planet motion, are equal to zero. The further evolution of motion is investigated in this class of orbits with the use of the canonical Poincare–Andoyer variables. Corresponding averaged equations are found, and phase pictures are constructed; the stability of stationary solutions is investigated on the basis of equations in variations. For the Solar system planets with their satellites, forming binary planets, the application of the presented model allows us to conclude that satellites sooner or later will fall on the corresponding planets.  相似文献   

13.
进动是锥体目标空间自旋飞行时特有的运动特性,通过刚体姿态动力学原理,采用微动分析方法分析了光滑表面锥体弹头目标的空间进动模型,并由雷达电磁散射原理建立了目标宽带回波模型.通过散射点仿真模型和电磁仿真数据,采用周期检验的方法分别对锥顶和锥尾散射点的进动参数进行提取,验证了分析和模型的正确性.  相似文献   

14.
杨永安  冯祖仁  张宏伟  吴云鹤 《宇航学报》2006,27(4):700-703,719
针对航天器入轨段,如何从多组初始轨道中选择一组最优或最符合客观实际轨道根数问题,进行了深入地理论分析,提出了基于逼近理想解排序法的航天器初始轨道根数选优算法。描述了逼近理想解排序法的设计思想以及求解的六个基本步骤;针对航天器初始轨道的设计特点,巧妙地利用标称轨道作为理想解,偏差轨道作为负理想解,成功地应用逼近理想解排序法建立了初始轨道根数选优的决策数学模型,并以一颗典型的太阳同步轨道卫星为例,验证了其数学模型和选优算法的合理性和正确性。  相似文献   

15.
尽管周期解的存在性已经被证明,但要在给定的动力学系统中寻找到满足一定精度要求的周期解依然是一件极富挑战性的工作.提出如下方法确定小行星平衡点附近精确的周期轨道(halo轨道).首先扩展运动方程:将小行星平衡点附近轨道运动方程的右端项在平衡点处展成三阶幂级数.从而将非线性运动学方程扩展为拟线性微分方程.然后求近似解析解:应用Lindstedt-Poincaré方法求解扩展后的运动方程组,将周期解和其运动频率展开成三阶幂级数,并将二者代人扩展后的拟线性微分方程中.这样就可以得到三个不同阶的线性运动方程,逐次求解三个微分方程并消除解中的永年项即可得到hal.轨道的三阶解析解.最后微分校正:将周期轨道在三阶解析解附近线性化,得到状态转移矩阵,并使用状态转移矩阵和轨道终端状态的偏差修正轨道初值,从而得到满足精度要求的精确引力场中的halo轨道.  相似文献   

16.
基于受摄轨道模型的小卫星轨道摄动分析研究   总被引:2,自引:0,他引:2  
王融  熊智  乔黎  刘建业 《航天控制》2007,25(3):66-70
小卫星在实际运行中受到多种摄动力的作用,这会对其轨道造成不同程度的影响,因此在小卫星的轨道设计与控制中,摄动是必须考虑的重要因素。本文以500km高的小卫星太阳同步轨道为研究对象,运用轨道摄动的基本理论,估计了地球非球形引力、大气阻力、太阳光压及第三体引力的量级并进行比较;建立小卫星轨道摄动分析模型,并在此模型的基础上,利用计算机仿真技术,对小卫星轨道摄动问题展开仿真研究,验证了几种主要摄动力的量级估计的结果,分析比较了几种主要摄动力对小卫星运行轨道的影响程度及规律,本文结果对小卫星轨道设计与控制具有很好的参考价值。  相似文献   

17.
李冬  易东云  程洪玮 《宇航学报》2011,32(11):2339-2345
利用两个短弧段的天基测角资料实现对空间目标的轨道确定是天基空间目标监视系统需解决的重要问题之一。提出利用二体轨道的角动量和能量守恒方程计算空间目标初轨的新方法,该方法将短弧段的主要测量信息表示为弧段属性,由两个短弧段的弧段属性建立守恒方程,采用变量替换法求解守恒方程获得多个初轨,通过方差分析从中选择合适的初轨。针对轨道改进中的迭代发散和收敛于局部极小点的问题,提出了选取多个迭代初值进行轨道改进的采样方法。仿真结果表明,初轨确定算法是可行的,轨道改进能成功解算最小二乘轨道。  相似文献   

18.
The motion of a satellite close to a dynamically symmetric solid body in a Newtonian gravitational field over a circular orbit is studied. The system of differential equations describing the body’s motion is close to a system with cyclic coordinate. New classes of periodic motions are constructed in the neighborhood of a known partial solution to an unperturbed problem, hyperboloidal precession of a dynamically symmetric satellite. In the resonance case, when the ratio of one frequency of small oscillations of a reduced system with two degrees of freedom in the neighborhood of a stable equilibrium position to the frequency of cyclic coordinate variation is close to an integer number, there exist one or three families of periodic motions that are analytic in terms of fractional powers of a small parameter. A study of stability of these motions was performed with the help of KAM (Kolmogorov-Arnold-Moser) theoty. Faling the described resonance there exists a unique family of periodic motions that is analytic in terms of integer powers of a small parameter. The check-up of stability of these motrons was carried out. We distinguished the cases of parametric resonance, resonances of the third and fourth orders, and a non-resonant case. In the resonance cases our study relies on well-known results on stability of Hamiltonian systems during resonances [1]. In the non-resonant case we use the KAM theory [2].  相似文献   

19.
Equilibrium positions of a small-mass body are considered with respect to a precessing dumbbell. The dumbbell represents two rigidly fixed spherical gravitating bodies. Such a system can be considered as a model of a binary asteroid. Stability of relative equilibrium positions with equal distances from the small mass to the attracting centers is studied. By analogy with the classical restricted three-body problem, these positions are referred to as triangle libration points. It is shown that the character of stability of these libration points is determined by three constant parameters: nutation angle and angular velocity of precession, as well as the ratio of masses at the ends of the dumbbell. Stability conditions are derived in the linear approximation, and the regions of stability and instability in the space of problem parameters are constructed. The paper is a continuation of [1].  相似文献   

20.
The results of determining the uncontrolled rotational motion of the Foton M-2 satellite (in orbit from May 31 to June 16, 2005) are presented. The determination was made using the data of onboard measurements of the Earth’s magnetic field strength. Segments 270 min long (three orbits) were selected from these data covering the first two thirds of the flight. On each such segment the data were processed jointly by the least squares method using integration of the equations of attitude motion of the satellite. In processing, the initial conditions of motion and parameters of the used mathematical model were estimated. The thus obtained results gave a complete overview of the satellite motion. This motion, having started with a small angular velocity, gradually accelerated, and in two days became close to the regular Euler precession of an axisymmetric solid body. On June 09, 2005 (the last day of measurements) the angular velocity of the satellite relative to its lengthwise axis was about 1.1 deg/s, while the projection of the angular velocity onto a plane perpendicular to this axis had an absolute value of about 0.11 deg/s. Deviations of the lengthwise axis from a normal to the orbit plane did not exceed 60°. Based on the results of determination of the rotational motion of the satellite, calculations of quasi-static microaccelerations on its board are performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号