首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
航空   5篇
航天   8篇
  2016年   1篇
  2009年   2篇
  2008年   3篇
  2006年   1篇
  2004年   2篇
  2003年   2篇
  2001年   1篇
  2000年   1篇
排序方式: 共有13条查询结果,搜索用时 687 毫秒
1.
Abrashkin  V. I.  Volkov  M. V.  Egorov  A. V.  Zaitsev  A. S.  Kazakova  A. E.  Sazonov  V. V. 《Cosmic Research》2003,41(6):593-612
We compare the results of two methods used to determine the angular velocity of the Foton-12 satellite and the low-frequency component of microaccelerations onboard it. The first method is based on reconstruction of the satellite's rotational motion using the data of onboard measurements of the strength of the Earth's magnetic field. The motion (time dependence of the orientation parameters and angular velocity) was found from the condition of best approximation of the measurement data by the functions calculated along the solutions to equations of attitude motion of the satellite. The solutions found were used to calculate the quasistatic component of microaccelerations at certain points of the satellite, in particular, at the point of location of an accelerometer of the QSAM system. Filtration of the low-frequency component of the angular velocity and microacceleration from the data of measurements by a sensor of angular velocity and by the accelerometer of this system served as a second method. The filtration was made using the discrete Fourier series. A spectral analysis of the functions representing the results of determining the angular velocity and microacceleration by both methods is performed. Comparing the frequencies and amplitudes of the harmonic component of these functions allowed us to estimate the accuracy of measurements made by the QSAM system in the low-frequency range.  相似文献   
2.
Coronal loops, which trace closed magnetic field lines, are the primary structural elements of the solar atmosphere. Complex dynamics of solar coronal magnetic loops, together with action of possible subphotospheric dynamo mechanisms, turn the majority of the coronal loops into current-carrying structures. In that connection none of the loops can be considered as isolated from the surroundings. The current-carrying loops moving relative to each other interact via the magnetic field and currents. One of the ways to take into account this interaction consists in application of the equivalent electric circuit models of coronal loops. According to these models, each loop is considered as an equivalent electric LCR-circuit with variable inductive coefficients L, capacitance C, and resistance R, which depend on shape, scale, position of the loop with respect to neighbouring loops, as well as on the plasma parameters in the magnetic tube. Such an approach enables to describe the process of electric current dynamics in the groups of coronal loops, as well as the related dynamical, energy release and radiation processes. In the present paper we describe the major principles of LCR-circuit models of coronal magnetic loops, and show their application for interpretation of the observed oscillatory phenomena in the loops and in the related radiation.  相似文献   
3.
We analyze the microacceleration measurements carried out onboard the Foton-11 satellite with the three-component accelerometer BETA. The microaccelerations were recorded virtually throughout the entire orbital flight of the Foton-11 satellite. The data obtained were analyzed in the following way. First they were used to determine the actual rotational motion of the satellite for several arbitrarily selected time intervals 4 h long. This problem was solved by constructing the approximation of the microacceleretation low-frequency component (previously determined from the data) by its calculated analog computed along the solutions to differential equations of rotational motion of the satellite. The approximation was made by the least squares method. As a result, those mathematical model parameters and the solutions to equations of motion were found that gave the best consistency of the microacceleretation low-frequency component and its calculated analog. Then the spectral analysis of the low-frequency component and its calculated analog was made. It was shown that, although basic harmonics of these functions coincided sufficiently well, some harmonics of the low-frequency component failed to be interpreted in terms of the satellite's rotational motion.  相似文献   
4.
Sazonov  V. V.  Abrashkin  V. I.  Kazakova  A. E.  Zaitsev  A. S. 《Cosmic Research》2004,42(2):194-201
The level of quasistatic microaccelerations onboard the Foton-M satellite is predicted for its flights in two orbits: the planned orbit with the altitudes in perigee h = 262 km and in apogee h = 304 km and the orbit with h = 262 km and h = 350 km. The prediction is based on mathematical simulation of the satellite motion with respect to its center of mass under the action of gravitational and aerodynamic moments. The model is represented by the system of equations of the satellite rotational motion. Parameters of this system are chosen from the condition of coincidence of the motion of preceding Foton satellites (h 220 km and h 400 km) calculated using this model with the results of determination of actual rotational motion of the Foton-11 and Foton-12 satellites. With the help of the model thus calibrated, a calculation is made of the rotational motion of the Foton-M satellite and of the quasistatic microaccelerations onboard it. As is shown by the results of simulation, the use of the first and the second orbits will result in reductions of microaccelerations by 30% and 60%, respectively.  相似文献   
5.
The vibroloading criteria are described to determine vibrations at the points of FV onboard equipment mounting. The generalized characteristics of vibroloading in the equipment tests are proposed and a method is considered that makes it possible to solve a problem of inconsistency between the three-dimensional loading in service and coordinate loading in tests.  相似文献   
6.
This work presents the study of the characteristic retention times on Carbosieve SIII adsorbent for several permanent gases CO2, CO, CH4, N2 with respect to the temperature of cooling of adsorption accumulators. To perform this work, a laboratory model of a gas chromatograph that included all key components of a standard instrument has been designed.  相似文献   
7.
The method and the results of investigating the low-frequency component of microaccelerations onboard the Foton-11satellite are presented. The investigation was based on the processing of data of the angular velocity measurements made by the German system QSAM, as well as the data of measurements of microaccelerations performed by the QSAM system and by the French accelerometer BETA. The processing was carried out in the following manner. A low-frequency (frequencies less than 0.01 Hz) component was selected from the data of measurements of each component of the angular velocity vector or of the microacceleration, and an approximation was constructed of the obtained vector function by a similar function that was calculated along the solutions to the differential equations of motion of the satellite with respect to its center of mass. The construction was carried out by the least squares method. The initial conditions of the satellite motion, its aerodynamic parameters, and constant biases in the measurement data were used as fitting parameters. The time intervals on which the approximation was constructed were from one to five hours long. The processing of the measurements performed with three different instruments produced sufficiently close results. It turned out to be that the rotational motion of the satellite during nearly the entire flight was close to the regular Eulerian precession of the axially symmetric rigid body. The angular velocity of the satellite with respect to its longitudinal axis was about 1 deg/s, while the projection of the angular velocity onto the plane perpendicular to this axis had an absolute value of about 0.2 deg/s. The magnitude of the quasistatic component of microaccelerations in the locations of the accelerometers QSAM and BETA did not exceed 5 × 10–5–10–4m/s2for the considered motion of the satellite.  相似文献   
8.
The results of determination of the uncontrolled attitude motion of the Foton-12 satellite (placed in orbit on September 9, 1999, terminated its flight on September 24, 1999) are presented. The determination was carried out by the onboard measurement data of the Earth's magnetic field strength vector. Intervals with a duration of several hours were selected from data covering almost the entire flight. On each such interval the data were processed simultaneously using the least squares method by integrating the satellite's equations of motion with respect to the center of mass. The initial conditions of motion and the parameters of the mathematical model employed were estimated in processing. The results obtained provided for a complete representation of the satellite's motion during the flight. This motion, beginning with a small angular velocity, gradually sped up. The growth of the component of the angular velocity with respect to the longitudinal axis of the satellite was particularly strong. During the first several days of the flight this component increased virtually after every passage through the orbit's perigee. As the satellite's angular velocity increased, its motion became more and more similar to the regular Euler precession of an axisymmetric rigid body. In the last several days of flight the satellite's angular velocity with respect to its longitudinal axis was about 1 deg/s and the projection of the angular velocity onto the plane perpendicular to this axis had a magnitude of approximately 0.15 deg/s. The deviation of the longitudinal axis from the normal to the orbit plane did not exceed 60°. The knowledge of the attitude motion of the satellite allowed us to determine the quasi-steady microacceleration component onboard it at the locations of the technological and scientific equipment.  相似文献   
9.
When studying microwave emission of active regions on the Sun, an effect of parametric resonance between 5-min velocity oscillations in the solar photosphere and sound oscillations of coronal magnetic loops modulating the microwave emission has been discovered for the first time. The effect shows itself as simultaneous excitation in coronal magnetic loop of oscillations with periods 5, 10, and 3 min, which correspond to the pumping frequency, subharmonic, and the first upper frequency of parametric resonance. The parametric resonance can serve as an effective channel of transporting the energy of photospheric oscillations into the upper layers of the solar atmosphere. This effect opens up the important prospects in understanding the mechanisms of coronal plasma heating.  相似文献   
10.
In the framework of designing vibration tests for the airborne equipment units the types of fatigue curves of their elements are determined. A method for recounting the value of the specified unit service life with regard for only vibration effect is proposed. Variants of vibration strength bench tests are considered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号