首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 559 毫秒
1.
The mission's success fully depends on the Payload Operations conducted during the space flight. The Ground Team has to be trained to assist the Space Crew, to replan the cosmonaut's activities when contingengies occurr onboard and to change or cancel Payload activities when required. In order to act efficiently during the mission, the Ground Team must be prepared in advance of the flight and able to operate special tools for tracking the mission's progress, anticipating problems and taking decisions in realtime.

This document sets out the approach for conducting such a preparation for Ground Operation. It will be focused on the Altaïr mission performed in July 1993 onboard the Russian Mir space station.  相似文献   


2.
Carbon fiber reinforced plastic (CFRP) tubes, with the increasing dimensions and performances requested for space structures, are becoming a basic building element of boom-type structures for large precision reflectors, towers and payload support structures such as the Modular Payload Support Structure, the Shuttle Pallet Satellite or the European Retrievable Carrier. It is very important for such applications that the CFRP tubes have minimum thermal distortions and very high stiffness.An extensive test program was performed to characterise the CFRP tubes that are used for such applications. Measurements of coefficient of thermal expansions, thermal conductivity, thermal cycling, microstructure behaviour, as well as mechanical tests and outgassing tests were performed. The main purpose was to correlate the microcracking with the thermal cycling and the coefficient of thermal expansion and thermal conductivity.These types of activities for the CFRP tubes were performed for the first time in Europe and important results were found, especially in the area of microcracking generation and correlation with engineering parameters. The influence of the thermal cycling speed on the microcracking was also studied. Most of the tests were conducted at ESTEC (European Space Research & Technology Centre, Holland) by the European Space Agency in the frame of the technology research activities.  相似文献   

3.
Uri JJ  Haven CP 《Acta Astronautica》2005,56(9-12):883-889
The tenth long-duration expedition crew is currently in residence aboard International Space Station (ISS), continuing a permanent human presence in space that began in October 2000. During that time, expedition crews have been operators and subjects for 18 Human Life Sciences investigations, to gain a better understanding of the effects of long-duration space flight on the crewmembers and of the environment in which they live. Investigations have been conducted to study: the radiation environment in the station as well as during extravehicular activity (EVA); bone demineralization and muscle deconditioning; changes in neuromuscular reflexes; muscle forces and postflight mobility; causes and possible treatment of postflight orthostatic intolerance; risk of developing kidney stones; changes in pulmonary function caused by long-duration flight as well as EVA; crew and crew–ground interactions; changes in immune function, and evaluation of imaging techniques. The experiment mix has included some conducted in flight aboard ISS as well as several which collected data only pre- and postflight. The conduct of these investigations has been facilitated by the Human Research Facility (HRF). HRF Rack 1 became the first research rack on ISS when it was installed in the US laboratory module Destiny in March 2001. The rack provides a core set of experiment hardware to support investigations, as well as power, data and commanding capability, and stowage. The second HRF rack, to complement the first with additional hardware and stowage capability, will be launched once Shuttle flights resume. Future years will see additional capability to conduct human research on ISS as International Partner modules and facility racks are added to ISS. Crew availability, both as a subject count and time, will remain a major challenge to maximizing the science return from the bioastronautics research program.  相似文献   

4.
Marmann RA 《Acta Astronautica》1997,40(11):815-820
For more than 15 years, Spacelab, has provided a laboratory in space for an international array of experiments, facilities, and experimenters. In addition to continuing this important work, Spacelab is now serving as a crucial stepping-stone to the improved science, improved operations, and rapid access to space that will characterize International Space Station. In the Space Station era, science operations will depend primarily on distributed/remote operations that will allow investigators to direct science activities from their universities, facilities, or home bases. Spacelab missions are a crucial part of preparing for these activities, having been used to test, prove, and refine remote operations over several missions. The knowledge gained from preparing these Missions is also playing a crucial role in reducing the time required to put an experiment into orbit, from revolutionizing the processes involved to testing the hardware needed for these more advanced operations. This paper discusses the role of the Spacelab program and the NASA Marshall Space Flight Center- (MSFC-) managed missions in developing and refining remote operations, new hardware and facilities for use on Space Station, and procedures that dramatically reduce preparation time for flight.  相似文献   

5.
Article     
This is a slightly edited version of the Executive Summary of a joint report on cooperation in space science produced by the Space Studies Board of the USA National Research Council and the European Space Science Committee of the European Science Foundation. Using analysis of 13 case-study missions it reviews 30 years of joint missions and makes 14 recommendations based on its findings. These include the importance of setting a scientific rationale for each mission and of ensuring that objectives are shared by engineers and others involved in it, the need for independent periodic assessments and that all agreements should specify the scope, expectations and obligations of the respective agencies and relevant partners.The USA and Europe have been cooperating in space science for more than three decades. This history of cooperation has survived significant geopolitical, economic and technological changes, such as the end of the Cold War, the pressure of budget reductions and the increasing focus on economic competition and the global marketplace. Both Europe and the USA have learned from one another and acquired a knowledge base as well as an infrastructure to implement joint missions and research activities. More importantly, the decades of cooperative space research efforts between the USA and Europe have built a community of scientists whose joint scientific exchanges have established a heritage of cooperation on both sides of the Atlantic.The scientific fruits of this heritage are plainly evident in achievements such as a signature for supermassive black holes provided by the Hubble Space Telescope (HST); the first views of the solar atmosphere and corona illuminated by the Solar and Heliospheric Observatory (SOHO); the sharing of expensive research facilities on the International Microgravity Laboratory (IML); and the impressive data on ocean altimetry from the Ocean Topography Experiment (TOPEX-POSEIDON) mission, which is significantly improving our understanding of global ocean circulation.There were no guideposts for the emergence of space science cooperation between Europe and the USA. In the process of introducing new procedures and improvements to facilitate cooperation, missteps occurred, and there were political, economic and scientific losses. This report takes stock of US–European history in cooperative space endeavors, the lessons it has demonstrated and the opportunities it suggests to enhance and improve future US–European cooperative efforts in the sciences conducted in space.  相似文献   

6.
Nearly six years after the launch of the first International Space Station element, and four years after its initial occupation, the United States and our 6 international partners have made great strides in operating this impressive Earth orbiting research facility. This past year we have done so in the face of the adversity of operating without the benefit of the Space Shuttle. In his January 14, 2004, speech announcing a new vision for America's space program, President Bush affirmed the United States' commitment to completing construction of the International Space Station by 2010. The President also stated that we would focus our future research aboard the Station on the long-term effects of space travel on human biology. This research will help enable human crews to venture through the vast voids of space for months at a time. In addition, ISS affords a unique opportunity to serve as an engineering test bed for hardware and operations critical to the exploration tasks. NASA looks forward to working with our partners on International Space Station research that will help open up new pathways for future exploration and discovery beyond low Earth orbit. This paper provides an overview of the International Space Station Program focusing on a review of the events of the past year, as well as plans for next year and the future.  相似文献   

7.
8.
欧空局为国际空间站研制了两个新型的计算机 :容错计算机 ( FTC)和标准有效载荷计算机 ( SPLC) ,它们可以满足空间站对计算机的需要 ,可以方便地构成各分种布式数据管理结构。文中介绍这两种不同类型的计算机设计  相似文献   

9.
Synchronized Position Hold Engage Reorient Experimental Satellites (SPHERES) is a formation flight testing facility consisting of three satellites operating inside the International Space Station (ISS). The goal is to use the long term microgravity environment of the ISS to mature formation flight and docking algorithms. The operations processes of SPHERES have also matured over the course of the first seven test sessions. This paper describes the evolution of the SPHERES program operations processes from conception to implementation to refinement through flight experience. Modifications to the operations processes were based on experience and feedback from Marshall Space Flight Center Payload Operations Center, USAF Space Test Program office at Johnson Space Center, and the crew of Expedition 13 (first to operate SPHERES on station). Important lessons learned were on aspects such as test session frequency, determination of session success, and contingency operations. This paper describes the tests sessions; then it details the lessons learned, the change in processes, and the impact on the outcome of later test sessions. SPHERES had very successful initial test sessions which allowed for modification and tailoring of the operations processes to streamline the code delivery and to tailor responses based on flight experiences.  相似文献   

10.
Man in space.     
Today, more than 20 years after the first in the world man's space walk, soviet cosmonautics gained large experience of extravehicular activity (EVA). Space suits of high reliability, onboard facilities for passing through the airlock, sets of special tools and technological rigging, as well as procedures for carrying out various EVA's were developed. In the course of the Salyut-7 space station orbital operation the EVA's have become regular. The author of the report as the participant of the EVA's considers the main steps of man activities in space and analyzes specific problems arised in performing such activities.  相似文献   

11.
In the past, one of the major problems in performing scientific investigations in space has been the high cost of developing, integrating, and transporting scientific experiments into space. The limited resources of unmanned spacecraft, coupled with the requirements for completely automated operations, was another factor contributing to the high costs of scientific research in space. In previous space missions after developing, integrating and transporting costly experiments into space and obtaining successful data, the experiment facility and spacecraft have been lost forever, because they could not be returned to earth. The objective of this paper is to present how the utilization of the Spacelab System will result in cost benefits to the scientific community, and significantly reduce the cost of space operations from previous space programs.The following approach was used to quantify the cost benefits of using the Spacelab System to greatly reduce the operational costs of scientific research in space. An analysis was made of the series of activities required to combine individual scientific experiments into an integrated payload that is compatible with the Space Transportation System (STS). These activities, including Shuttle and Spacelab integration, communications and data processing, launch support requirements, and flight operations were analyzed to indicate how this new space system, when compared with previous space systems, will reduce the cost of space research. It will be shown that utilization of the Spacelab modular design, standard payload interfaces, optional Mission Dependent Equipment (MDE), and standard services, such as the Experiment Computer Operating System (ECOS), allow the user many more services than previous programs, at significantly lower costs. In addition, the missions will also be analyzed to relate their cost benefit contributions to space scientific research.The analytical tools that are being developed at MSFC in the form of computer programs that can rapidly analyze experiment to Spacelab interfaces will be discussed to show how these tools allow the Spacelab integrator to economically establish the payload compatibility of a Spacelab mission.The information used in this paper has been assimilated from the actual experience gained in integrating over 50 highly complex, scientific experiments that will fly on the Spacelab first and second missions. In addition, this paper described the work being done at the Marshall Space Flight Center (MSFC) to define the analytical integration tools and techniques required to economically and efficiently integrate a wide variety of Spacelab payloads and missions. The conclusions reached in this study are based on the actual experience gained at MSFC in its roles of Spacelab integration and mission managers for the first three Spacelab missions. The results of this paper will clearly show that the cost benefits of the Spacelab system will greatly reduce the costs and increase the opportunities for scientific investigation from space.  相似文献   

12.
Roger D. Launius   《Space Policy》2006,22(4):226-234
This article reviews the core legacies of the Space Shuttle program after 25 years and suggests that, while it was not an unadulterated success, on balance the Shuttle served a valuable role in the development of spaceflight and deserves an overall positive assessment in history. There are five core legacies that deserve discussion. First, the Space Shuttle has a reputation as a mistake resulting from a policy failure that should never have been pursued. Second, it has been criticized as a program that prohibited other paths for the US space program. Third, and more positively, the Space Shuttle provided more than two decades of significant human spaceflight capability and stretched the nature of what could be accomplished in Earth orbit much beyond where it had previously been. Fourth, it served as a relatively flexible platform for scientific activities. Finally, and perhaps most significantly since the US human spaceflight program has always been focused on national prestige, the Space Shuttle served well as a symbol of American technological verisimilitude.  相似文献   

13.
In fulfilling the National Aeronautics and Space Administration's (NASA) responsibility to encourage the fullest commercial use of space the Space Product Development (SPD) Program, within the Microgravity Research Program Office (MRPO) located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, is managing an organization of Commercial Space Centers (CSC's) that have successfully employed methods for encouraging private industries to exploit the benefits of space-based research. Unique research opportunities of the space environment are being made available to private industry in an effort to develop new, competitive products; create jobs; and enhance the country's quality of life. Over 200 commercial research activities have been conducted in space by the CSC's and their industrial partners during the last several years. The success of this research is evidenced by the increasing amount of industrial participation in commercial microgravity research and the potential products nearing marketability.  相似文献   

14.
In order to verify that the International Space Station (ISS) payload facility racks do not disturb the microgravity environment of neighboring facility racks and that the facility science operations are not compromised, a testing and analytical verification process must be followed. Currently no facility racks have taken this process from start to finish. The authors are participants in implementing this process for the NASA Glenn Research Center (GRC) Fluids and Combustion Facility (FCF). To address the testing part of the verification process, the Microgravity Emissions Laboratory (MEL) was developed at GRC. The MEL is a 6 degree of freedom inertial measurement system capable of characterizing inertial response forces (emissions) of components, sub-rack payloads, or rack-level payloads down to 10(-7) g's. The inertial force output data, generated from the steady state or transient operations of the test articles, are utilized in analytical simulations to predict the on-orbit vibratory environment at specific science or rack interface locations. Once the facility payload rack and disturbers are properly modeled an assessment can be made as to whether required microgravity levels are achieved. The modeling is utilized to develop microgravity predictions which lead to the development of microgravity sensitive ISS experiment operations once on-orbit. The on-orbit measurements will be verified by use of the NASA GRC Space Acceleration Measurement System (SAMS). The major topics to be addressed in this paper are: (1) Microgravity Requirements, (2) Microgravity Disturbers, (3) MEL Testing, (4) Disturbance Control, (5) Microgravity Control Process, and (6) On-Orbit Predictions and Verification.  相似文献   

15.
Space technology and resources are used around the world to address societal challenges. Space provides valuable satellite services, unique scientific discoveries, surprising technology applications and new economic opportunities. Many developing countries formally recognize the advantages of space resources and pursue national level activity to harness them. There is limited data or documentation on the space activities of developing countries. Meanwhile, traditional approaches to summarize national space activity do not necessarily capture the types of activity that developing countries pursue in space. This is especially true if they do not have a formal national space program or office. Developing countries pursue national space activity through activities of many types—from national satellite programs to commercial use of satellite services to involvement with international space institutions. This research aims to understand and analyze these trends. This paper introduces two analytical frameworks for evaluating space activity at the national level. The frameworks are specifically designed to capture the activity of countries that have traditionally been less involved in space. They take a broad view of space related activity across multiple societal sectors and disciplines. The discussion explains the approach for using the frameworks as well as illustrative examples of how they can be applied as part of a research process. The first framework is called the Mission and Management Ladders. This framework considers specific space projects within countries and ranks them on “Ladders” that measure technical challenge and managerial autonomy. This first method is at a micro level of analysis. The second framework is called the Space Participation Metric (SPM). The SPM can be used to assign a Space Participation score to countries based on their involvement in various space related activities. This second method uses a macro level of analysis. The authors developed both frameworks as part of a long term research program about the space activities of developing countries. This aspect of the research focuses on harnessing multiple techniques to summarize complex, multi-disciplinary information about global space activity.  相似文献   

16.
Space Policy is here reprinting edited extracts from two reports — one French, one American — which aim to forecast the market for space applications and launch services over the next 10 and 15 years respectively. Euroconsult 1986 edition of The World Space Industry Survey: Ten-Year Outlook gives a country-by-country analysis of policies and programmes; an evaluation of markets for space applications and a forecast of the market for launch systems. The Report on the 1986 Outside Users Payload Model, prepared by Battelle, Columbus Division, for the US National Aeronautics and Space Administration, provides an estimate of demand for launch services for payloads in a range of mission categories flown by countries outside the Soviet bloc. Using different starting points and methodologies, the two reports nevertheless draw convincingly similar conclusions.  相似文献   

17.
The political climate today is more favourable for joint superpower cooperation in space than it has been for many years. The authors of this Viewpoint, who studied together as members of the inaugural class of the International Space University, trace recent developments in the USA and USSR and evaluate how they might affect cooperation. Ironically, they find, it is the common problems both nations face in relation to space activities - budgetary constraints and declining political support for their space programmes - that argue most forcefully for cooperation. But a subtle and initially modest strategy will be needed to overcome the obstacles that stand in the way.  相似文献   

18.
Issues about commercialization of space have been a growing concern in the past decade for the space community. This paper focuses on the work from a team of 51 students attending the Summer Session Program of the International Space University in Bremen, Germany. CASH 2021 (Commercial Access and Space Habitation) documents a plan that identifies commercial opportunities for space utilization that will extend human presence in space, and will chart the way forward for the next 20 years. The group selected four commercial sectors that show the most promise for the future: tourism, entertainment, space system service, assembly and debris removal, and research and development/production. The content of this document presents the results of their research. Historical activities in each of the commercial sectors are reviewed along with the current market situation. To provide a coherent background for future commercialization possibilities a scenario has been developed. This scenario includes a postulated upon ideal future and includes social, political and economic factors that may affect the space industry over the timeline of the study. The study also presents a roadmap, within the limited optimistic scenario developed, for the successful commercialization of space leading to future human presence in space. A broad range of commercially viable opportunities, not only within the current limits of the International Space Station, but also among the many new developments that are expected by 2021 are discussed.  相似文献   

19.
Canada and the International Space Station program: overview and status   总被引:4,自引:0,他引:4  
Gibbs G  Sachdev S 《Acta Astronautica》2002,51(1-9):591-600
The twelve months since IAF 2000 have been perhaps the most exciting, challenging and rewarding months for Canada since the beginning of our participation in the International Space Station program in 1984. The highlight was the successful launch, on-orbit check out, and the first operational use of Canadarm2, the Space Station Remote Manipulator System, between April and July 2001. The anomalies encountered and the solutions found to achieve this success are described in the paper. The paper describes, also, the substantial progress that has been made, during the twelve months since IAF 2000, by Canada as it continues to complete work on all flight-elements of its contribution to the International Space Station and as we transition into real-time Space Station operations support and Canadian utilization. Canada's contribution to the International Space Station is the Mobile Servicing System (MSS), the external robotic system that is key to the successful assembly of the Space Station, the maintenance of its external systems, astronaut EVA support, and the servicing of external science payloads. The MSS ground segment that supports MSS operations, training, sustaining engineering, and logistics activities is reaching maturity. The MSS Engineering Support Center and the MSS Sustaining Engineering Facility are providing real-time support for on-orbit operations, and a Canadian Payloads Telescience Operations Center is now in place. Mission Controllers, astronauts and cosmonauts from all Space Station Partners continue to receive training at the Canadian Space Agency. The Remote Multi Purpose Room, one element of the MSS Operations Complex, will be ready to assume backroom support in 2002. Canada has completed work on identifying its Space Station utilization activities for the period 2000 through 2004. Also during the past twelve months the CSA drafted and is proceeding with the approval of a Canadian Space Station Commercialization Policy. Canadian astronauts have now participated in three ISS assembly missions--Julie Payette on STS-96, Marc Garneau on STS-97, and Chris Hadfield on STS-100 in April 2001 during which he performed Canada's first EVA and the successful installation of the Space Station Remote Manipulator System.  相似文献   

20.
During the past ten years the French laboratories working in the field of fluids and material sciences had access to regular, long-lasting manned missions onboard the Russian MIR Space Station. Beyond the French scientific program that was performed with the ALICE apparatus, a cooperative research program was developed with DLR, NASA and RSA. This cooperation was based on bartered agreements that included the joint utilization of the instruments onboard the MIR station (ALICE, TITUS furnace from DLR, vibration device from RKK Energia) and the funding of dedicated cartridges (DLR) or thermostats (DLR and NASA), as well as launch services (NASA) by the Cooperating Agencies. We present a review of this program with a particular emphasis on its scientific results and on the progress that has been achieved in science and applications. They covered a large field of condensed matter physics, from material sciences to near-critical and off-critical phase separation kinetics and near critical fluid hydrodynamics (thermoacoustic heat transport and vibrational convection). The high microgravity relevance of all these investigations naturally led to outstanding results that was published in the world's best scientific journals. The analysis of the latest experiments performed during the PEGASUS mission shows they will not be an exception to that evaluation. Off-critical phase separation with NASA, pressure-driven piston effect and equiaxed solidification with DLR, heat transport under calibrated vibrations with RKK Energia, all will be presented. The conclusion will stress the international character of this microgravity research program, the conditions of its success and what can be gained from it in the perspective of the space station utilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号