首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
SVET Space Greenhouse (SG)--the first automated facility for growing of higher plants in microgravity was designed in the eighty years to be used for the future BLSS. The first successful experiment with vegetables was carried out in 1990 on the MIR Space Station (SS). The experiments in SVET SG were resumed in 1995, when an American Gas Exchange Measurement System (GEMS) was added. A three-month wheat experiment was carried out as part of MIR-SHUTTLE'95 program. SVET-2 SG Bulgarian equipment of a new generation with optimised characteristics was developed (financed by NASA). The new SVET-GEMS equipment was launched on board the MIR SS and a successful six-month experiments for growing up of two crops of wheat were conducted in 1996 - 97 as part of MIR-NASA-3 program. The first of these "Greenhouse" experiments (123 days) with the goal to grow wheat through a complete life cycle is described. Nearly 300 heads developed but no seeds were produced. A second crop of wheat was planted and after 42 days the plants were frozen for biochemical investigations. The main environmental parameters during the six-month experiments in SVET (substrate moisture and lighting period) are given. The results and the contribution to BLSS are discussed.  相似文献   

2.
The control of water content and water movement in granular substrate-based plant root systems in microgravity is a complex problem. Improper water and oxygen delivery to plant roots has delayed studies of the effects of microgravity on plant development and the use of plants in physical and mental life support systems. Our international effort (USA, Russia and Bulgaria) has upgraded the plant growth facilities on the Mir Orbital Station (OS) and used them to study the full life cycle of plants. The Bulgarian-Russian-developed Svet Space Greenhouse (SG) system was upgraded on the Mir OS in 1996. The US developed Gas Exchange Measurement System (GEMS) greatly extends the range of environmental parameters monitored. The Svet-GEMS complex was used to grow a fully developed wheat crop during 1996. The growth rate and development of these plants compared well with earth grown plants indicating that the root zone water and oxygen stresses that have limited plant development in previous long-duration experiments have been overcome. However, management of the root environment during this experiment involved several significant changes in control settings as the relationship between the water delivery system, water status sensors, and the substrate changed during the growth cycles.  相似文献   

3.
Pellis NR  North RM 《Acta Astronautica》2004,55(3-9):589-598
The activation of the US Laboratory Module "Destiny" on the International Space Station (ISS) in February 2001 launched a new era in microgravity research. Destiny provides the environment to conduct long-term microgravity research utilizing human intervention to assess, report, and modify experiments real time. As the only available pressurized space platform, ISS maximizes today's scientific resources and substantially increases the opportunity to obtain much longed-for answers on the effects of microgravity and long-term exposure to space. In addition, it evokes unexpected questions and results while experiments are still being conducted, affording time for changes and further investigation. While building and outfitting the ISS is the main priority during the current ISS assembly phase, seven different space station crews have already spent more than 2000 crew hours on approximately 80 scientific investigations, technology development activities, and educational demonstrations.  相似文献   

4.
The paper describes the "SVET" project--a new generation of space greenhouse with small dimensions. Through the use of a minicomputer, "SVET" is fully capable of automatically operating and controlling environmental systems for higher plant growth. A number of preliminary studies have shown the radish and cabbage to be potentially important crops for CELSS (Closed Environmental Life Support System). The "SVET" space greenhouse was mounted on the "CRYSTAL" technological module docked to the Mir orbital space station on 10 June 1990. Soviet cosmonauts Balandin and Solovyov started the first experiments with the greenhouse on 15 June 1990. Preliminary results of seed cultivation over an initial 54-day period in "SVET" are presented. Morphometrical characteristics of plants brought back to Earth are given. Alteration in plant characteristics, such as growth and developmental changes, or morphological contents were noted. A crop of radish plants was harvested under microgravity conditions. Characteristics of plant environmental control parameters and an estimation of functional properties of control and regulation systems of the "SVET" greenhouse in space flight as received via telemetry data is reported.  相似文献   

5.
The International Space Station as a microgravity research platform   总被引:2,自引:0,他引:2  
  相似文献   

6.
The Active Rack Isolation System [ARIS] International Space Station [ISS] Characterization Experiment, or ARIS-ICE for short, is a long duration microgravity characterization experiment aboard the ISS. The objective of the experiment is to fully characterize active microgravity performance of the first ARIS rack deployed on the ISS. Efficient ground and on-orbit command and data handling [C&DH] segments are the crux in achieving the challenging objectives of the mission. The objective of the paper is to provide an overview of the C&DH architectures developed for ARIS-ICE, with the view that these architectures may serve as a model for future ISS microgravity payloads. Both ground and on-orbit segments, and their interaction with corresponding ISS C&DH systems are presented. The heart of the on-orbit segment is the ARIS-ICE Payload On-orbit Processor, ARIS-ICE POP for short. The POP manages communication with the ISS C&DH system and other ISS subsystems and payloads, enables automation of test/data collection sequences, and provides a wide range of utilities such as efficient file downlinks/uplinks, data post-processing, data compression and data storage. The hardware and software architecture of the POP is presented and it is shown that the built-in functionality helps to dramatically streamline the efficiency of on-orbit operations. The ground segment has at its heart special ARIS-ICE Ground Support Equipment [GSE] software developed for the experiment. The software enables efficient command and file uplinks, and reconstruction and display of science telemetry packets. The GSE software architecture is discussed along with its interactions with ISS ground C&DH elements. A test sequence example is used to demonstrate the interplay between the ground and on-orbit segments.  相似文献   

7.
In order to verify that the International Space Station (ISS) payload facility racks do not disturb the microgravity environment of neighboring facility racks and that the facility science operations are not compromised, a testing and analytical verification process must be followed. Currently no facility racks have taken this process from start to finish. The authors are participants in implementing this process for the NASA Glenn Research Center (GRC) Fluids and Combustion Facility (FCF). To address the testing part of the verification process, the Microgravity Emissions Laboratory (MEL) was developed at GRC. The MEL is a 6 degree of freedom inertial measurement system capable of characterizing inertial response forces (emissions) of components, sub-rack payloads, or rack-level payloads down to 10(-7) g's. The inertial force output data, generated from the steady state or transient operations of the test articles, are utilized in analytical simulations to predict the on-orbit vibratory environment at specific science or rack interface locations. Once the facility payload rack and disturbers are properly modeled an assessment can be made as to whether required microgravity levels are achieved. The modeling is utilized to develop microgravity predictions which lead to the development of microgravity sensitive ISS experiment operations once on-orbit. The on-orbit measurements will be verified by use of the NASA GRC Space Acceleration Measurement System (SAMS). The major topics to be addressed in this paper are: (1) Microgravity Requirements, (2) Microgravity Disturbers, (3) MEL Testing, (4) Disturbance Control, (5) Microgravity Control Process, and (6) On-Orbit Predictions and Verification.  相似文献   

8.
SELENE (SELf-rewetting fluids for thermal ENErgy management) is a microgravity experiment proposed to the European Space Agency (ESA) in response to the Announcement of Opportunities for Physical Sciences. Main objectives of the microgravity research onboard the International Space Station (ISS) include the quantitative investigation of heat transfer performances in model heat pipes and validation of adequate theoretical and numerical models. In particular the research is focused on “self-rewetting fluids”, i.e. fluid mixtures with unusual surface tension properties. This article summarizes preliminary ground-based research activities in preparation of the microgravity experiments. They include: (1) thermophysical properties measurements; (2) study of thermo-soluto-capillary effects in micro-channels; (3) numerical modeling; (4) measurements with optical (e.g. interferometric) and intrusive techniques; (5) surface tension-driven effects and thermal performances test on different capillary structures and heat pipes; and (6) breadboards development and support to definition of scientific requirements.  相似文献   

9.
Experimental observations of adaptation processes of the motor control system to altered gravity conditions can provide useful elements to the investigations on the mechanisms underlying motor control of human subject. The microgravity environment obtained on orbital flights represents a unique experimental condition for the monitoring of motor adaptation. The research in motor control exploits the changes caused by microgravity on the overall sensorimotor process, due to the impairment of the sensory systems whose function depends upon the presence of the gravity vector. Motor control in microgravity has been investigated during parabolic flights and short-term space missions, in particular for analysis of movement-posture co-ordination when equilibrium is no longer a constraint. Analysis of long-term adaptation would also be very interesting, calling for long-term body motion observations during the process of complete motor adaptation to the weightlessness environment. ELITE-S2 is an innovative facility for quantitative human movement analysis in weightless conditions onboard the International Space Station (ISS). ELITE-S2 is being developed by the Italian Space Agency, ASI is to be delivering the flight models to NASA to be included in an expressed rack in US Lab Module in February 2004. First mission is currently planned for summer 2004 (increment 10 ULF 2 ISS).  相似文献   

10.
The primary objective of the International Space Station (ISS) is to provide a long-term quiescent environment for the conduct of scientific research for a variety of microgravity science disciplines. This paper reports to the microgravity scientific community the results of an initial characterization of the microgravity environment on the International Space Station for increments 2 through 4. During that period almost 70,000 hours of station operations and scientific experiments were conducted. 720 hours of crew research time were logged aboard the orbiting laboratory and over half a terabyte of acceleration data were recorded and much of that was analyzed. The results discussed in this paper cover both the quasi-steady and vibratory acceleration environment of the station during its first year of scientific operation. For the quasi-steady environment, results are presented and discussed for the following: the space station attitudes Torque Equilibrium Attitude and the X-Axis Perpendicular to the Orbital Plane; station docking attitude maneuvers; Space Shuttle joint operation with the station; cabin de-pressurizations and the station water dumps. For the vibratory environment, results are presented for the following: crew exercise, docking events, and the activation/de-activation of both station life support system hardware and experiment hardware. Finally, a grand summary of all the data collected aboard the station during the 1-year period is presented showing where the overall quasi-steady and vibratory acceleration magnitude levels fall over that period of time using a 95th percentile benchmark.  相似文献   

11.
Future space systems, such as Columbus, the planned European contribution to the International Space Station, offer ample possibilities for microgravity research and application. These new opportunities require adequate user support on ground and novel operational concepts in order to ensure an effective utilization. Extensive experience in microgravity user support has been accumulated at DFVLR during the past Spacelab 1 and D1 missions. Based on this work, a Microgravity User Support Centre (MUSC) has been built and is active for the forthcoming EURECA-A1 and D2 missions, to form an integrated support centre for the disciplines life sciences and material sciences in the Space Station era. The objective of the user support at MUSC is to achieve:
• easy access to space experiments for scientific and commercial users,
• efficient preparation of experiments,
• optimum use of valuable microgravity experimentation time,
• cost reduction by concentration of experience.
This is implemented by embedding the MUSC in an active scientific environment in both disciplines, such that users can share the experience gained by professional personnel. In this way, the Space Station system is operated along the lines established on ground for the utilization of large international research facilities, such as accelerators or astronomical observatories. In addition, concepts are developed to apply advanced telescience principles for Space Station operations.  相似文献   

12.
空间站有效载荷真空支持系统方案评述   总被引:1,自引:0,他引:1  
有效载荷真空支持系统是空间有效载荷支持系统的重要组成部分,为空间有效载荷实验的顺利进行提供真空环境支持和保证。文章详细分析了国际空间站包括美国“命运号”实验舱(USL)、欧空局哥伦布轨道舱(APM)及日本实验舱(JEM)内的有效载荷真空支持系统方案及使用情况;对美国实验舱内的一号微重力材料科学机柜及微重力燃烧科学机柜内部专用的真空支持系统作了主要介绍;最后提出了我国空间站有效载荷真空支持系统的初步方案设想,即合理安排有效载荷实验进行次序,将废气排放子系统及真空资源子系统合二为一,以节约资源,提高可靠性。  相似文献   

13.
When the idea of a large space station in Low Earth Orbit (LEO) was conceived in the 1980s, it was primarily planned as an orbiting laboratory for microgravity research. Some even thought of it as an industrial plant in space. Whereas the latter did not materialize because of various reasons, the former is absolutely true when you talk about the International Space Station (ISS). Since the transition to a six astronaut crew in 2009 and the completion of its assembly in 2011, it has been intensively used as laboratory in a wide field of scientific topics. Experiments conducted on ISS have yielded first class results in biology, physiology, material science, basic physics, and many more. While its role as a laboratory in space is widely recognized, the awareness for its potential for preparing future exploration missions beyond LEO is just increasing. This paper provides information on how the ISS programme contributes to future exploration efforts, both manned and unmanned. It highlights the work that has been done or is currently underway in the fields of technology, operations, and science. Further potentials and future projects for exploration preparation are also shown. A special focus lies on experiments and projects primarily funded by the German Aerospace Center (DLR) or with strong German participation in the science team.  相似文献   

14.
The International Space Station will provide an extremely high-quality, long-duration microgravity environment for the conduct of research. In addition, the ISS offers a platform for performing observations of Earth and Space from a high-inclination orbit, outside of the Earth's atmosphere. This unique environment and observational capability offers the opportunity for advancement in a diverse set of research fields. Many of these disciplines do not relate to one another, and present widely differing approaches to study, as well as different resource and operational requirements. Significant challenges exist to ensure the highest quality research return for each investigation. Requirements from different investigations must be identified, clarified, integrated and communicated to ISS personnel in a consistent manner. Resources such as power, crew time, etc. must be apportioned to allow the conduct of each investigation. Decisions affecting research must be made at the strategic level as well as at a very detailed execution level. The timing of the decisions can range from years before an investigation to real-time operations. The international nature of the Space Station program adds to the complexity. Each participating country must be assured that their interests are represented during the entire planning and operations process. A process for making decisions regarding research planning, operations, and real-time replanning is discussed. This process ensures adequate representation of all research investigators. It provides a means for timely decisions, and it includes a means to ensure that all ISS International Partners have their programmatic interests represented.  相似文献   

15.
Kicza M  Erickson K  Trinh E 《Acta Astronautica》2003,53(4-10):659-663
Recent events in the International Space Station (ISS) Program have resulted in the necessity to re-examine the research priorities and research plans for future years. Due to both technical and fiscal resource constraints expected on the International Space Station, it is imperative that research priorities be carefully reviewed and clearly articulated. In consultation with OSTP and the Office of Management and budget (OMB), NASA's Office of Biological and Physical Research (OBPR) assembled an ad-hoc external advisory committee, the Biological and Physical Research Maximization and Prioritization (REMAP) Task Force. This paper describes the outcome of the Task Force and how it is being used to define a roadmap for near and long-term Biological and Physical Research objectives that supports NASA's Vision and Mission. Additionally, the paper discusses further prioritizations that were necessitated by budget and ISS resource constraints in order to maximize utilization of the International Space Station. Finally, a process has been developed to integrate the requirements for this prioritized research with other agency requirements to develop an integrated ISS assembly and utilization plan that maximizes scientific output.  相似文献   

16.
Synchronized Position Hold Engage Reorient Experimental Satellites (SPHERES) is a formation flight testing facility consisting of three satellites operating inside the International Space Station (ISS). The goal is to use the long term microgravity environment of the ISS to mature formation flight and docking algorithms. The operations processes of SPHERES have also matured over the course of the first seven test sessions. This paper describes the evolution of the SPHERES program operations processes from conception to implementation to refinement through flight experience. Modifications to the operations processes were based on experience and feedback from Marshall Space Flight Center Payload Operations Center, USAF Space Test Program office at Johnson Space Center, and the crew of Expedition 13 (first to operate SPHERES on station). Important lessons learned were on aspects such as test session frequency, determination of session success, and contingency operations. This paper describes the tests sessions; then it details the lessons learned, the change in processes, and the impact on the outcome of later test sessions. SPHERES had very successful initial test sessions which allowed for modification and tailoring of the operations processes to streamline the code delivery and to tailor responses based on flight experiences.  相似文献   

17.
The Microgravity Research Program (MRP) participated aggressively in Phase 1 of the International Space Station Program using the Russian Mir Space Station. The Mir Station offered an otherwise unavailable opportunity to explore the advantages and challenges of long duration microgravity space research. Payloads with both National Aeronautics and Space Agency (NASA) and commercial backing were included as well as cooperative research with the Canadian Space Agency (CSA). From this experience, much was learned about long-duration on-orbit science utilization and developing new working relationships with our Russian partner to promote efficient planning, operations, and integration to solve complexities associated with a multiple partner program.

This paper focuses on the microgravity research conducted onboard the Mir space station. It includes the Program preparation and planning necessary to support this type of cross increment research experience; the payloads which were flown; and summaries of significant microgravity science findings.  相似文献   


18.
Scientists have conducted studies involving human spaceflight crews for over three decades. These studies have progressed from simple observations before and after each flight to sophisticated experiments during flights of several weeks up to several months. The findings from these experiments are available in the scientific literature. Management of these flight experiments has grown into a system fashioned from the Apollo Program style, focusing on budgeting, scheduling and allocation of human and material resources. While these areas remain important to the future, the International Space Station (ISS) requires that the Life Sciences spaceflight experiments expand the existing project management methodology. The use of telescience with state-of-the-art information technology and the multi-national crews and investigators challenges the former management processes. Actually conducting experiments on board the ISS will be an enormous undertaking and International Agreements and Working Groups will be essential in giving guidance to the flight project management Teams forged in this matrix environment must be competent to make decisions and qualified to work with the array of engineers, scientists, and the spaceflight crews. In order to undertake this complex task, data systems not previously used for these purposes must be adapted so that the investigators and the project management personnel can all share in important information as soon as it is available. The utilization of telescience and distributed experiment operations will allow the investigator to remain involved in their experiment as well as to understand the numerous issues faced by other elements of the program. The complexity in formation and management of project teams will be a new kind of challenge for international science programs. Meeting that challenge is essential to assure success of the International Space Station as a laboratory in space.  相似文献   

19.
NASA's microgravity fundamental physics program has used the Space Shuttle to perform high resolutions experiments in space. As we come to the end of the Shuttle era, we will begin to perform research aboard the ISS. A large stable of ground based experiments have been selected from NASA Research Announcements in a variety of disciplines. These investigations will form the backbone from which to select future flight candidates. Research in Laser Cooling and Atomic Physics will enable us to operate highly precise clocks in space. Low temperature physics experiments will use a liquid helium facility with a six-month lifetime. This facility can also support experiments in gravitational physics. Researchers in biological physics will be offered an opportunity to develop future experiments that can benefit from space experimentation. An overview of the future research directions and the benefits to the community of performing research aboard the ISS will be presented.  相似文献   

20.
《Acta Astronautica》2007,60(4-7):420-425
The study of internal clock systems of scorpions in weightless conditions is the goal of the SCORPI experiment. SCORPI was selected for flight on the International Space Station (ISS) and will be mounted in the European facility BIOLAB, the European Space Agency (ESA) laboratory designed to support biological experiments on micro-organisms, cells, tissue, cultures, small plants and small invertebrates. This paper outlines the main features of a breadboard designed and developed in order to allow the analysis of critical aspects of the experiment. It is a complete tool to simulate the experiment mission on ground and it can be customised, adapted and tuned to the scientific requirements. The paper introduces the SCORPI-T experiment which represents an important precursor for the success of the SCORPI on BIOLAB. The capabilities of the hardware developed show its potential use for future similar experiments in space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号