首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 506 毫秒
1.
The SVET Space Greenhouse (SG)--the first and the only automated plant growth facility onboard the MIR Space Station in the period 1990-2000 was developed on a Russian-Bulgarian Project in the 80s. The aim was to study plant growth under microgravity in order to include plants as a link of future Biological Life Support Systems for the long-term manned space missions. An American developed Gas Exchange Measurement System (GEMS) was added to the existing SVET SG equipment in 1995 to monitor more environmental and physiological parameters. A lot of long-duration plant flight experiments were carried out in the SVET+GEMS. They led to significant results in the Fundamental Gravitational Biology field--second-generation wheat seeds were produced in the conditions of microgravity. The new International Space Station (ISS) will provide a perfect opportunity for conducting full life cycle plant experiments in microgravity, including measurement of more vital plant parameters, during the next 15-20 years. Nowadays plant growth facilities for scientific research based on the SVET SG functional principles are developed for the ISS by different countries (Russia, USA, Italy, Japan, etc.). A new Concept for an advanced SVET-3 Space Greenhouse for the ISS, based on the Bulgarian experience and "know-how" is described. The absolute and differential plant chamber air parameters and some plant physiological parameters are measured and processed in real time. Using the transpiration and photosynthesis measurement data the Control Unit evaluates the plant status and performs adaptive environmental control in order to provide the most favorable conditions for plant growth at every stage of plant development in experiments. A conceptual block-diagram of the SVET-3 SG is presented.  相似文献   

2.
The control of water content and water movement in granular substrate-based plant root systems in microgravity is a complex problem. Improper water and oxygen delivery to plant roots has delayed studies of the effects of microgravity on plant development and the use of plants in physical and mental life support systems. Our international effort (USA, Russia and Bulgaria) has upgraded the plant growth facilities on the Mir Orbital Station (OS) and used them to study the full life cycle of plants. The Bulgarian-Russian-developed Svet Space Greenhouse (SG) system was upgraded on the Mir OS in 1996. The US developed Gas Exchange Measurement System (GEMS) greatly extends the range of environmental parameters monitored. The Svet-GEMS complex was used to grow a fully developed wheat crop during 1996. The growth rate and development of these plants compared well with earth grown plants indicating that the root zone water and oxygen stresses that have limited plant development in previous long-duration experiments have been overcome. However, management of the root environment during this experiment involved several significant changes in control settings as the relationship between the water delivery system, water status sensors, and the substrate changed during the growth cycles.  相似文献   

3.
The paper describes the "SVET" project--a new generation of space greenhouse with small dimensions. Through the use of a minicomputer, "SVET" is fully capable of automatically operating and controlling environmental systems for higher plant growth. A number of preliminary studies have shown the radish and cabbage to be potentially important crops for CELSS (Closed Environmental Life Support System). The "SVET" space greenhouse was mounted on the "CRYSTAL" technological module docked to the Mir orbital space station on 10 June 1990. Soviet cosmonauts Balandin and Solovyov started the first experiments with the greenhouse on 15 June 1990. Preliminary results of seed cultivation over an initial 54-day period in "SVET" are presented. Morphometrical characteristics of plants brought back to Earth are given. Alteration in plant characteristics, such as growth and developmental changes, or morphological contents were noted. A crop of radish plants was harvested under microgravity conditions. Characteristics of plant environmental control parameters and an estimation of functional properties of control and regulation systems of the "SVET" greenhouse in space flight as received via telemetry data is reported.  相似文献   

4.
PHYSIOLAB is a cardio-vascular laboratory designed by CNES in cooperation with IMBP, with double scientific and medical goals: -a better understanding of the basic mechanisms involved in blood pressure and heart rate regulation, in order to predict and control the phenomenon of cardio-vascular deconditionning. -a real-time monitoring of cosmonauts during functional tests. Launched to the MIR station in 1996, this laboratory was set up and used for the first time by Claudie Andre-Deshays during the French mission "Cassiopeia". The scientific program is performed pre, post and in-flight to study phenomena related to the transition to microgravity as well as the return to the earth conditions. Particular emphasis was placed on the development of the real-time telemetry to monitor LBNP test. This function was successful during the Cassiopeia mission, providing the medical team at TSOUP (MIR Control Center in Moscow) with efficient means to control the physiological state of the cosmonaut. Based on the results of this first mission, IMBP and CNES will go on using Physiolab with Russian crews. CNES will take advantage of the upcoming French missions on MIR to improve the system, and intends to develop a new laboratory for the International Space Station.  相似文献   

5.
Manned spaceflight has been an important element of the German space program over the last decades. This is demonstrated by the nationally managed space missions Spacelab D-l (1985), D-2 (1993), and MIR '92 as well as by the participation in the 1st Spacelab mission FSLP (1983), the NASA missions IML-1 (1992) and IML-2 (1994), as well as in the ESA missions EUROMIR '94 and '95. On February 12th, this year, the German cosmonaut Reinhold Ewald was launched together with his Russian colleagues Wasilij Zibliew and Alexander Lasudkin onboard of a Soyuz spacecraft for another stay of a German cosmonaut onboard of the Russian Space Station MIR. This mission--the so-called German/Russian MIR '97--was, of course, another cornerstone with regard to the cooperation between Russian and German space organizations. The cooperation in the area of manned missions began 1978 with the flight of the German cosmonaut Sigmund Jahn onboard of Salyut 6, at that time a cooperation between the Soviet Union and the German Democratic Republic in the frame of the Interkosmos Program. In March 1992, it was followed by the flight of Klaus Dietrich Flade with his stay onboard of MIR. After two further successful ESA missions, EUROMIR '94 and '95 with the two German cosmonauts Ulf Merbold and Thomas Reiter and with a marked contribution of German scientists, the decision was taken to perform another German/Russian MIR mission, the so-called MIR '97. In Germany, MIR'97 was managed and performed in a joint effort between several partners. DARA, the German Space Agency, was responsible for the overall program and project management, while DLR, the German Aerospace Research Establishment, was responsible for the cosmonaut training, for medical operations, for the mission control at GSOC in Oberpfaffenhofen as well as for user support.  相似文献   

6.
Russia has gained a lot of experience in operating the space suits (SS) during the extravehicular activities (EVA) by the crews of SALYUT-6, SALYUT-7 and MIR orbiting stations. A total of 21 Orlan-type space suits of various models were operated onboard the orbiting stations (OS) during almost 20 years period. Some of these space suits served up to 3 years in orbit. The paper reviews special features of long SS operation (without return to the Earth) onboard an orbiting station as well as the problems associated with SS repeated use by several crews. An analysis of measures to support solving of the problems of SS long stay and reliable operation onboard the orbiting station is made: selection of a corresponding SS type and separate elements design; selection of the materials; routine and preventive maintenance; development tests. The advantages of the space suit of a semi-rigid type for solving the above problems are shown. The paper includes a short analysis of space suits' operation onboard the Russian orbiting station MIR, and some restuts of inspection of the Orlan-DMA space suit returned to the Earth from orbit by STS-79 alter long operation in orbit. Recommendations on further improvement of the space suits for EVA operations in the International Space Station (ISS) are given.  相似文献   

7.
A feasibility study in 1992 showed the benefits of a common European Russian space suit development, EVA Suit 2000, replacing the Russian space suit Orlan-DMA and the planned European Hermes EVA space suit at the turn of the century. This EVA Suit 2000 is a joint development initiated by the European Space Agency (ESA) and the Russian Space Agency (RKA). The main objectives of this development program are: first utilization aboard the Russian Space Station MIR-2; performance improvement with respect to current operational suits; development cost reduction. Russian experience gained with the present extravehicular activity (EVA) suit on the MIR Space Station and extensive application of European Technologies will be needed to achieve these ambitious goals. This paper presents the current status of the development activities, the space suit system design and concentrates in more detail on life support aspects. Specific subjects addressed will include the overall life support conceptual architecture, design features, crew comfort and operational considerations.  相似文献   

8.
This paper reviews shortly the results obtained by a preliminary call for experiment proposals for future Spacelab flights issued by the European Space Agency in April 1978. The results of this call indicate clearly the trend towards experiments performing studies on the state and the evolution of fluid media. The instrumentation used are mainly multipurpose instruments (furnaces, process chambers) already under development for the first Spacelab flight and new equipment currently under study.  相似文献   

9.
During the past ten years the French laboratories working in the field of fluids and material sciences had access to regular, long-lasting manned missions onboard the Russian MIR Space Station. Beyond the French scientific program that was performed with the ALICE apparatus, a cooperative research program was developed with DLR, NASA and RSA. This cooperation was based on bartered agreements that included the joint utilization of the instruments onboard the MIR station (ALICE, TITUS furnace from DLR, vibration device from RKK Energia) and the funding of dedicated cartridges (DLR) or thermostats (DLR and NASA), as well as launch services (NASA) by the Cooperating Agencies. We present a review of this program with a particular emphasis on its scientific results and on the progress that has been achieved in science and applications. They covered a large field of condensed matter physics, from material sciences to near-critical and off-critical phase separation kinetics and near critical fluid hydrodynamics (thermoacoustic heat transport and vibrational convection). The high microgravity relevance of all these investigations naturally led to outstanding results that was published in the world's best scientific journals. The analysis of the latest experiments performed during the PEGASUS mission shows they will not be an exception to that evaluation. Off-critical phase separation with NASA, pressure-driven piston effect and equiaxed solidification with DLR, heat transport under calibrated vibrations with RKK Energia, all will be presented. The conclusion will stress the international character of this microgravity research program, the conditions of its success and what can be gained from it in the perspective of the space station utilization.  相似文献   

10.
Bluem V  Paris F 《Acta Astronautica》2001,48(5-12):287-297
Most concepts for bioregenerative life support systems are based on edible higher land plants which create some problems with growth and seed generation under space conditions. Animal protein production is mostly neglected because of the tremendous waste management problems with tetrapods under reduced weightlessness. Therefore, the "Closed Equilibrated Biological Aquatic System" (C.E.B.A.S.) was developed which represents an artificial aquatic ecosystem containing aquatic organisms which are adapted at all to "near weightlessness conditions" (fishes Xiphophorus helleri, water snails Biomphalaria glabrata, ammonia oxidizing bacteria and the rootless non-gravitropic edible water plant Ceratophyllum demersum). Basically the C.E.B.A.S. consists of 4 subsystems: a ZOOLOGICAL (correction of ZOOLOGICASL) COMPONENT (animal aquarium), a BOTANICAL COMPONENT (aquatic plant bioreactor), a MICROBIAL COMPONENT (bacteria filter) and an ELECTRONICAL COMPONENT (data acquisition and control unit). Superficially, the function principle appears simple: the plants convert light energy into chemical energy via photosynthesis thus producing biomass and oxygen. The animals and microorganisms use the oxygen for respiration and produce the carbon dioxide which is essential for plant photosynthesis. The ammonia ions excreted by the animals are converted by the bacteria to nitrite and then to nitrate ions which serve as a nitrogen source for the plants. Other essential ions derive from biological degradation of animal waste products and dead organic matter. The C.E.B.A.S. exists in 2 basic versions: the original C.E.B.A.S. with a volume of 150 liters and a self-sustaining standing time of more than 13 month and the so-called C.E.B.A.S. MINI MODULE with a volume of about 8.5 liters. In the latter there is no closed food loop by reasons of available space so that animal food has to be provided via an automated feeder. This device was flown already successfully on the STS-89 and STS-90 spaceshuttle missions and the working hypothesis was verified that aquatic organisms are nearly not affected at all by space conditions, i.e. that the plants exhibited biomass production rates identical to the sound controls and that as well the reproductive, and the immune system as the embryonic and ontogenic development of the animals remained undisturbed. Currently the C.E.B.A.S. MINI MODLULE is prepared for a third spaceshuttle flight (STS-107) in spring 2001. Based on the results of the space experiments a series of prototypes of aquatic food production modules for the implementation into BLSS were developed. This paper describes the scientific disposition of the STS-107 experiment and of open and closed aquaculture systems based on another aquatic plant species, the Lemnacean Wolffia arrhiza which is cultured as a vegetable in Southeastern Asia. This plant can be grown in suspension culture and several special bioreactors were developed for this purpose. W. arrhiza reproduces mainly vegetatively by buds but also sexually from time to time and is therefore especially suitable for genetic engineering, too. Therefore it was used, in addition, to optimize the C.E.B.A.S. MINI MODULE to allow experiments with a duration of 4 month in the International Space Station the basic principle of which will be explained. In the context of aquaculture systems for BLSS the continuous replacement of removed fish biomass is an essential demand. Although fish reproduction seems not to be affected in the shortterm space experiments with the C.E.B.A.S. MINI MODULE a functional and reliable hatchery for the production of siblings under reduced weightlessness is connected with some serious problems. Therefore an automated "reproduction module" for the herbivorous fish Tilapia rendalli was developed as a laboratory prototype. It is concluded that aquatic modules of different degrees of complexity can optimize the productivity of BLSS based on higher land plants and that they offer an unique opportunity for the production of animal protein in lunar or planetary bases.  相似文献   

11.
《Acta Astronautica》2007,60(4-7):420-425
The study of internal clock systems of scorpions in weightless conditions is the goal of the SCORPI experiment. SCORPI was selected for flight on the International Space Station (ISS) and will be mounted in the European facility BIOLAB, the European Space Agency (ESA) laboratory designed to support biological experiments on micro-organisms, cells, tissue, cultures, small plants and small invertebrates. This paper outlines the main features of a breadboard designed and developed in order to allow the analysis of critical aspects of the experiment. It is a complete tool to simulate the experiment mission on ground and it can be customised, adapted and tuned to the scientific requirements. The paper introduces the SCORPI-T experiment which represents an important precursor for the success of the SCORPI on BIOLAB. The capabilities of the hardware developed show its potential use for future similar experiments in space.  相似文献   

12.
13.
A pilot model of a bio-technical life support system (BTLSS) including human and plant wastes has been developed at the Institute of Biophysics SB RAS (Krasnoyarsk, Russia). This paper describes the structure of the photosynthesizing unit of the system, which includes wheat, chufa and vegetables. The study substantiates the simultaneous use of neutral and biological substrates for cultivating plants. A novel physicochemical method for the involvement of human wastes in the cycling has been employed, which enables the use of recycled products as nutrients for plants. Inedible plant biomass was subjected to biological combustion in the soil-like substrate (SLS) and was thus involved in the system mass exchange; NaCl contained in native urine was returned to the human through the consumption of Salicornia europaea, an edible salt-concentrating plant. Mass transfer processes in the studied BLSS have been examined for different chemical components.  相似文献   

14.
15.
In the paper an attempt is made to combine three important criteria of LSS comparison: minimum mass, maximum safety and maximum quality of life. Well-known types of BLSS were considered: with higher plant, higher plants and mushrooms, microalgae, and hydrogen-oxidizing bacteria. These BLSSs were compared in terms of "integrated" mass for the case of a vegetarian diet and a "normal" one (with animal proteins and fats). It was shown that the BLSS with higher plants and incineration of wastes becomes the best when the exploitation period is more than 1 yr. The dependence of higher plants' LSS structure on operation time was found. Comparison of BLSSs in terms of integral reliability (this criterion includes mass and quality of life criteria) for a lunar base scenario showed that BLSSs with higher plants are advantageous in reliability and comfort. This comparison was made for achieved level of technology of closing and for perspective one.  相似文献   

16.
NASA's microgravity fundamental physics program has used the Space Shuttle to perform high resolutions experiments in space. As we come to the end of the Shuttle era, we will begin to perform research aboard the ISS. A large stable of ground based experiments have been selected from NASA Research Announcements in a variety of disciplines. These investigations will form the backbone from which to select future flight candidates. Research in Laser Cooling and Atomic Physics will enable us to operate highly precise clocks in space. Low temperature physics experiments will use a liquid helium facility with a six-month lifetime. This facility can also support experiments in gravitational physics. Researchers in biological physics will be offered an opportunity to develop future experiments that can benefit from space experimentation. An overview of the future research directions and the benefits to the community of performing research aboard the ISS will be presented.  相似文献   

17.
One year after the achievemant of the 2 weeks ANTARES french-russian mission in the MIR station in July 1992, a 22 days ALTAÏR mission with a french cosmonaut has been performed in July 1993, making use of the scientific payload remaining on board. Taking benefit of the analysis of the previous mission, the experimental protocols were adapted to refine scientific objectives and gave to the scientists the opportunity to enhance quantitatively and qualitatively their results. The french biomedical program, conducted in close scientific cooperation with IMBP and associated laboratories, was composed of 8 experiments out of which 2 were new with regards to the ANTARES program. In the field of cardio-vascular physiology and fluid regulation, the experiments: ORTHOSTATISME, DIURESE have been renewed and complemented by the TISSU experiment (proposed by a german scientist) and a real-time tele-assistance program using US echography technic and ground support from the french CADMOS support control center located in Toulouse. With respect to neurosciences objectives, to the experiments VIMINAL (cognitive processes) and ILLUSIONS (study of proprioceptives cues), was added the SYNERGIES experiment to analyse the postural adjustements during movement. The IMMUNOLOGIE experiment carried on and the radiobiological experiment BIODOSE ended.

Adding the results of the 2 missions ANTARES and ALTAÏR, and the data obtained in between onboard with russian cosmonauts, the scientists have received a wealth of physiological data and gained reproducibility and confidence in their results.  相似文献   


18.
In the frame of the 179-days EUROMIR '95 space mission, two in-flight experiments have foreseen quantitative three-dimensional human movement analysis in microgravity. For this aim, a space qualified opto-electronic motion analyser based on passive markers has been installed onboard the Russian Space Station MIR and 8 in flight sessions have been performed. Techhology and method for the collection of kinematics data are described, evaluating the accuracy in three-dimensional marker localisation. Results confirm the suitability of opto-electronic technology for quantitative human motion analysis on orbital modules and raise a set of "lessons learned", leading to the improvement of motion analyser performance with a contemporary swiftness of the on-board operations. Among the experimental program of T4, results of three voluntary posture perturbation protocols are described. The analysis suggests that a short term reinterpretation of proprioceptive information and re-calibration of sensorimotor mechanisms seem to end within the first weeks of flight, while a continuous long term adaptation process allows the refinement of motor performance, in the frame of never abandoned terrestrial strategies.  相似文献   

19.
During previous long-term manned missions, more than 100 species of microorganisms have been identified on surfaces of materials (bacteria and fungi). Among them were potentially pathogenic ones (saprophytes) which are capable of active growth on artificial substrates, as well as technophilic bacteria and fungi causing damages (destruction and degradation) to various materials (metals and polymers), resulting in failures and disruptions in the functioning of equipment and hardware.

Aboard a space vehicle some microclimatic parameters are optimal for microorganism growth: the atmospheric fluid condensate with its specific composition, chemical and/or antropogenic contaminants (human metobolic products, etc.) all are stimulating factors for the development of bacteria and mould fungi on materials of the interior and equipment of an orbital station during its operational phase(s).

Especially Russian long-term missions (SALJUT, MIR) have demonstrated that uncontrolled interactions of microorganisms with materials will ultimately lead to the appearence of technological and medical risks, significantly influencing safety and reliability characteristics of individual as well as whole systems and/ or subsystems.

For a first conclusion, it could be summarized, that countermeasures and anti-strategies focussing on Microbial Contamination Management (MCM) for the International Space Station (ISS, next long-term manned mission) at least require a new materials test approach.

Our respective concept includes a combined age-ing/biocorrosion test sequence. It is represented here, as well as current status of MCM program, e.g. continuous monitoring (microbiological analyses), long-term disinfection, frequent cleaning methods, mathematical modeling of ISS, etc.  相似文献   


20.
Uri JJ  Lebedev ON 《Acta Astronautica》2001,48(5-12):845-851
The Phase 1 research program was unprecedented in its scope and ambitious in its objectives. The National Aeronautics and Space Administration committed to conducting a multidisciplinary long-duration research program on a platform whose capabilities were not well known, not to mention belonging to another country. For the United States, it provided the first opportunity to conduct research in a long-duration space flight environment since the Skylab program in the 1970's. Multiple technical as well as cultural challenges were successfully overcome through the dedicated efforts of a relatively small cadre of individuals. The program developed processes to successfully plan, train for and execute research in a long-duration environment, with significant differences identified from short-duration space flight science operations. Between August 1994 and June 1998, thousands of kilograms of research hardware was prepared and launched to Mir, and thousands of kilograms of hardware and data products were returned to Earth. More than 150 Principal Investigators from eight countries were involved in the program in seven major research disciplines: Advanced Technology; Earth Sciences; Fundamental Biology; Human Life Sciences; International Space Station Risk Mitigation; Microgravity; and Space Sciences. Approximately 75 long-duration investigations were completed on Mir, with additional investigations performed on the Shuttle flights that docked with Mir. The flight phase included the participation of seven US astronauts and 20 Russian cosmonauts. The successful completion of the Phase 1 research program not only resulted in high quality science return but also in numerous lessons learned to make the ISS experience more productive. The cooperation developed during the program was instrumental in its success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号