首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Walsh MM 《Astrobiology》2004,4(4):429-437
Sedimentary rocks have traditionally been the focus of the search for Archean microfossils; the Earth's oldest fossil bacteria are associated with carbonaceous matter in sedimentary cherts in greenstone belts in the eastern Pilbara block of Western Australia and Barberton greenstone belt of South Africa. Reports of possible fossils in a martian meteorite composed of igneous rock and the discovery of modern bacteria associated with basalts have stimulated a new look at Archean volcanic rocks as possible sites for fossil microbes. This study examines silicified volcaniclastic rocks, near-surface altered volcanic flow rocks, and associated stromatolite- like structures from the Archean Barberton greenstone belt to evaluate their potential for the preservation of carbonaceous fossils. Detrital carbonaceous particles are widely admixed with current-deposited debris. Carbonaceous matter is also present in altered volcanic flow rocks as sparse particles in silica veins that appear to be fed by overlying carbonaceous chert layers. Neither microfossils nor mat-like material was identified in the altered volcanic rocks or adjacent stromatolite-like structures. Ancient volcanic flow and volcaniclastic rocks are not promising sites for carbonaceous fossil preservation.  相似文献   

2.
For the foreseeable future, the search for evidence of past life in rocks acquired from other planets will be constrained by the amount of sample available and by the fidelity of preservation of any fossils present. What amount of rock is needed to establish the existence of past life? To address this question, we studied a minute amount of rock collected from cherty dolomites of the Proterozoic Buxa Formation in the metamorphically altered tectonically active northeastern Himalaya. In particular, we investigated 2 small petrographic thin sections-one from each of 2 bedded chert horizons exposed in the Ranjit River stratigraphic section northwest of Rishi, Sikkim, India-that together comprise an area of approximately 5 cm(2) (about the size of a US postage stamp) and have a total rock weight of approximately 0.1 g. Optical microscopy, confocal laser scanning microscopy, and Raman spectroscopy and imagery demonstrate that each of the thin sections contains a rich assemblage of 3-dimensionally permineralized organic-walled microfossils. This study, the first report of Proterozoic microfossils in units of the Ranjit tectonic window, demonstrates that firm evidence of early life can be adduced from even a minuscule amount of fossil-bearing ancient rock.  相似文献   

3.
To identify microscopic particles as actual fossil material, it would be useful to have a means of unambiguously recognizing which carbonaceous deposits found in rocks are residues from once-living organisms (i.e., biogenic material). Those residues consist of many different, mostly aromatic (i.e., benzene ring-containing), C-O-H-dominated molecules, and typically are called kerogens. Raman microprobe spectroscopy can be applied to minute samples of ancient kerogens either isolated from their host rocks or in situ in thin section. The Raman spectra generated by monochromatic blue or green laser excitation (e.g., at 488, 514, 532 nm) typically show only generic spectral features indicative of discontinuous arrays of condensed benzene rings (i.e., structures referred to as "disordered carbonaceous material"). Thus, despite the complex chemistry of kerogens and the expected presence of H, O, and N, the Raman spectra typically do not show any evidence of functional groups, such as CH, CH(2), CH(3), CO, and CN. Moreover, the same kind of Raman spectral signature as is obtained from kerogens also is obtained from many other poorly ordered carbonaceous materials that arise through nonbiological processes, such as in situ heating of organic or inorganic compounds (whether or not they are of biological origin), metamorphic mobilization of preexisting carbon compounds, and high-temperature precipitation from hydrothermal solutions. Thus, neither a Raman spectrum, nor a Raman image derived from such spectra, definitively can identify a sample as "kerogen," but only as "disordered carbonaceous material." Clearly, the fact that small, opaque grains consist of disordered carbonaceous material is necessary, but not sufficient, to prove them to be residues of cellular material and, thus, biogenic.  相似文献   

4.
A major difficulty that has long hindered studies of organic-walled Precambrian microbes in petrographic thin sections is the accurate documentation of their three-dimensional morphology. To address this need, we here demonstrate the use of confocal laser scanning microscopy. This technique, both non-intrusive and non-destructive, can provide data by which to objectively characterize, in situ and at submicron-scale resolution, the cellular and organismal morphology of permineralized (petrified) microorganisms. Application of this technique can provide information in three dimensions about the morphology, taphonomy, and fidelity of preservation of such fossils at a spatial resolution unavailable by any other means.  相似文献   

5.
A NanoSIMS ion microprobe was used to map the submicron-scale distributions of carbon, nitrogen, sulfur, silicon, and oxygen in organic microfossils and laminae in a thin section of the approximately 0.85 billion year old Bitter Springs Formation of Australia. The data provide clues about the original chemistry of the microfossils, the silicification process, and the biosignatures of specific microorganisms and microbial communities. Chemical maps of fossil unicells and filaments revealed distinct wall- and sheath-like structures enriched in C, N, and S, consistent with their accepted biological origin. Surprisingly, organic laminae, previously considered to be amorphous, also exhibited filamentous and apparently compressed spheroidal structures defined by strong enrichments in C, N, and S. By analogy to NanoSIMS data from the well-preserved microfossils, these structures were interpreted as being of biological origin, most likely representing densely packed remnants of microbial mats. Given that the preponderance of organic matter in Precambrian sediments is similarly "amorphous," our findings indicate that a re-evaluation of ancient specimens via in situ structural, chemical, and isotopic study is warranted. Our analyses have led us to propose new criteria for assessing the biogenicity of problematic kerogenous materials, and, thus, these criteria can be applied to assessments of poorly preserved or fragmentary organic residues in early Archean sediments and any that might occur in meteorites or other extraterrestrial samples.  相似文献   

6.
Moreau JW  Sharp TG 《Astrobiology》2004,4(2):196-210
Microfossils preserved in chert from the;1.9 Ga Gunflint Formation (Schreiber Beach, Ontario, Canada) were studied with transmission electron microscopy (TEM) and analytical TEM (ATEM). Our goals were to uncover the style of silicification relative to the distribution of organic matter, and to evaluate the distribution and evolution of organic matter, at submicroscopic spatial scales. Petrographically the microfossils typically display filamentous or coccoidal morphologies, and consist of quartz crystals surrounded by kerogen along grain boundaries. ATEM analysis revealed that quartz associated with kerogen consists of 200-500nm-sized, round crystallites, whereas the chert matrix is comprised of randomly oriented, polygonal microquartz (5-10 microm). Silica spheroids found within some fossils consist of quartz subgrains in an amorphous to poorly crystalline matrix, suggesting that precipitation of opaline silica on organic matter occurred with subsequent but incomplete transformation to quartz. Some coccoidal microfossils surround large euhedral quartz crystals (up to 5 microm in diameter) that appeared to have influenced the distribution of kerogen during crystal growth. These euhedral quartz crystals commonly contain elongated (50-100 nm) iron-rich crystallites. Energy-loss, near-edge structure analysis of kerogen associated with a coccoidal microfossil showed that it is composed of amorphous carbon with no evidence of graphitization. TEM results revealed significant differences in the style of silicification between microbe-shaped microfossils and their surrounding chert matrix, as well as the presence of amorphous kerogen.  相似文献   

7.
Hofmann A  Bolhar R 《Astrobiology》2007,7(2):355-388
The 3.5-3.2 Ga old volcano-sedimentary succession of the Barberton greenstone belt (South Africa) is characterized by lithological units that are repeated in a regular manner. Komatiitic, basaltic, and dacitic volcanic and volcaniclastic sequences are capped by zones of silica enrichment, followed by bedded carbonaceous cherts. Stratiform and crosscutting carbonaceous chert veins are common in silica alteration zones and bedded cherts. A detailed field study of several chert horizons and chert veins that range in age from 3.47 to 3.30 Ga revealed the importance of syndepositional hydrothermal activity for their origin. Bedded cherts consist of silicified detrital and tuffaceous sediments that were deposited on the seafloor. Silicification took place at the sediment-water interface as a result of diffuse upflow of low-temperature hydrothermal fluids, which gave rise to the formation of impermeable chert caps. Fluid overpressure resulted in the breaching of the cap rocks at times. Chert veins contain angular host rock fragments, replace wall rocks, and show evidence of multiple vein fillings and in situ brecciation of earlier generations of vein fillings. They represent hydraulic fractures that were initiated by overpressuring of the hydrothermal system. The vein networks were infilled, partly by hydrothermal chert precipitates, and partly by still unconsolidated (not yet silicified) sedimentary material derived from overlying sedimentary horizons. Field, petrographic, isotopic, and trace element evidence indicate that most carbonaceous matter represents sedimentary material that originated by biogenic processes in the Archean oceans and not by hydrothermal processes in the subsurface.  相似文献   

8.
Morphologically diverse structures that may constitute organic microfossils are reported from three remote and widely separated localities assigned to the ca. 3400?Ma Strelley Pool Formation in the Pilbara Craton, Western Australia. These localities include the Panorama, Warralong, and Goldsworthy greenstone belts. From the Panorama greenstone belt, large (> 40?μm) lenticular to spindle-like structures, spheroidal structures, and mat-forming thread-like structures are found. Similar assemblages of carbonaceous structures have been identified from the Warralong and Goldsworthy greenstone belts, though these assemblages lack the thread-like structures but contain film-like structures. All structures are syngenetic with their host sedimentary black chert, which is associated with stromatolites and evaporites. The host chert is considered to have been deposited in a shallow water environment. Rigorous assessment of biogenicity (considering composition, size range, abundance, taphonomic features, and spatial distributions) suggests that cluster-forming small (<15 μm) spheroids, lenticular to spindle-like structures, and film-like structures with small spheroids are probable microfossils. Thread-like structures are more likely fossilized fibrils of biofilm, rather than microfossils. The biogenicity of solitary large (>15?μm) spheroids and simple film-like structures is less certain. Although further investigations are required to confirm the biogenicity of carbonaceous structures from the Strelley Pool Formation, this study presents evidence for the existence of morphologically complex and large microfossils at 3400?Ma in the Pilbara Craton, which can be correlated to the contemporaneous, possible microfossils reported from South Africa. Although there is still much to be learned, they should provide us with new insights into the early evolution of life and shallow water ecosystems.  相似文献   

9.
The possibility of life on Mars is explored through the recently found meteorite ALH84001. Thought to have left Mars 16 million years ago, the meteorite was found on an Antarctic ice shelf in 1984. Carbonate globules were found containing microfossils and unusual mineral compounds. NASA researchers believe they have found single-celled fossils resembling nanobacteria fossils found on Earth, but caution that much more research is required.  相似文献   

10.
Abundant graphite particles occur in amphibolite-grade quartzite of the Archean-Paleoproterozoic Wutai Metamorphic Complex in the Wutaishan area of North China. Petrographic thin section observations suggest that the graphite particles occur within and between quartzite clasts and are heterogeneous in origin. Using HF maceration techniques, the Wutai graphite particles were extracted for further investigation. Laser Raman spectroscopic analysis of a population of extracted graphite discs indicated that they experienced a maximum metamorphic temperature of 513 +/- 50 degrees C, which is consistent with the metamorphic grade of the host rock and supports their indigenicity. Scanning and transmission electron microscopy revealed that the particles bear morphological features (such as hexagonal sheets of graphite crystals) related to metamorphism and crystal growth, but a small fraction of them (graphite discs) are characterized by a circular morphology, distinct marginal concentric folds, surficial wrinkles, and complex nanostructures. Ion microprobe analysis of individual graphite discs showed that their carbon isotope compositions range from -7.4 per thousand to -35.9 per thousand V-PDB (Vienna Pee Dee Belemnite), with an average of -20.3 per thousand, which is comparable to bulk analysis of extracted carbonaceous material. The range of their size, ultrastructures, and isotopic signatures suggests that the morphology and geochemistry of the Wutai graphite discs were overprinted by metamorphism and their ultimate carbon source probably had diverse origins that included abiotic processes. We considered both biotic and abiotic origins of the carbon source and graphite disc morphologies and cannot falsify the possibility that some circular graphite discs characterized by marginal folds and surficial wrinkles represent deflated, compressed, and subsequently graphitized organic-walled vesicles. Together with reports by other authors of acanthomorphic acritarchs from greenschist-amphibolite-grade metamorphic rocks, this study suggests that it is worthwhile to examine carbonaceous materials preserved in highly metamorphosed rocks for possible evidence of ancient life.  相似文献   

11.
The PROCESS (PRebiotic Organic ChEmistry on the Space Station) experiment was part of the EXPOSE-E payload outside the European Columbus module of the International Space Station from February 2008 to August 2009. During this interval, organic samples were exposed to space conditions to simulate their evolution in various astrophysical environments. The samples used represent organic species related to the evolution of organic matter on the small bodies of the Solar System (carbonaceous asteroids and comets), the photolysis of methane in the atmosphere of Titan, and the search for organic matter at the surface of Mars. This paper describes the hardware developed for this experiment as well as the results for the glycine solid-phase samples and the gas-phase samples that were used with regard to the atmosphere of Titan. Lessons learned from this experiment are also presented for future low-Earth orbit astrochemistry investigations.  相似文献   

12.
Abstract Microbialites are biologically mediated carbonate deposits found in diverse environments worldwide. To explore the organisms and processes involved in microbialite formation, this study integrated genomic, lipid, and both organic and inorganic stable isotopic analyses to examine five discrete depth horizons spanning the surface 25?mm of a modern freshwater microbialite from Cuatro Ciénegas, Mexico. Distinct bacterial communities and geochemical signatures were observed in each microbialite layer. Photoautotrophic organisms accounted for approximately 65% of the sequences in the surface community and produced biomass with distinctive lipid biomarker and isotopic (δ(13)C) signatures. This photoautotrophic biomass was efficiently degraded in the deeper layers by heterotrophic organisms, primarily sulfate-reducing proteobacteria. Two spatially distinct zones of carbonate precipitation were observed within the microbialite, with the first zone corresponding to the phototroph-dominated portion of the microbialite and the second zone associated with the presence of sulfate-reducing heterotrophs. The coupling of photoautotrophic production, heterotrophic decomposition, and remineralization of organic matter led to the incorporation of a characteristic biogenic signature into the inorganic CaCO(3) matrix. Overall, spatially resolved multidisciplinary analyses of the microbialite enabled correlations to be made between the distribution of specific organisms, precipitation of carbonate, and preservation of unique lipid and isotopic geochemical signatures. These findings are critical for understanding the formation of modern microbialites and have implications for the interpretation of ancient microbialite records. Key Words: Microbial ecology-Microbe-mineral interactions-Microbial mats-Stromatolites-Genomics. Astrobiology 12, 685-698.  相似文献   

13.
Several locations have been identified on Mars that expose bulk, coarsely crystalline gray hematite. These deposits have been interpreted as being sedimentary and formed in aqueous environments. Lake Superior Type (LST) banded iron formation (BIF) was investigated as a spectral and possible process analog to these deposits. In northern Michigan, LST BIF formed in a sedimentary, continental shelf or shallow basin environment under stable tectonic conditions, and the oxide facies contains gray, crystalline hematite. These deposits are Proterozoic in age and contain microfossils associated with the early diversification of life on Earth. Samples of the hematite-bearing oxide facies, as well as the carbonate facies, were collected and analyzed for their spectral and geochemical characteristics. Sample spectra were measured in the visible, near-infrared, and thermal infrared for comparison with remote and in situ spectra obtained at Mars. Thin section analysis, as well as X-ray diffraction and scanning electron microscopy measurements, were performed to determine detailed geochemistry. There is no evidence for BIF at Opportunity's Meridiani landing site, and the results of this work will provide useful data for determining whether BIFs exist elsewhere on Mars and are, thus, relevant to current and future Mars exploration missions.  相似文献   

14.
Abstract Orbital and in situ analyses establish that aerially extensive deposits of evaporitic sulfates, including gypsum, are present on the surface of Mars. Although comparable gypsiferous sediments on Earth have been largely ignored by paleontologists, we here report the finding of diverse fossil microscopic organisms permineralized in bottom-nucleated gypsums of seven deposits: two from the Permian (~260?Ma) of New Mexico, USA; one from the Miocene (~6?Ma) of Italy; and four from Recent lacustrine and saltern deposits of Australia, Mexico, and Peru. In addition to presenting the first report of the widespread occurrence of microscopic fossils in bottom-nucleated primary gypsum, we show the striking morphological similarity of the majority of the benthic filamentous fossils of these units to the microorganisms of a modern sulfuretum biocoenose. Based on such similarity, in morphology as well as habitat, these findings suggest that anaerobic sulfur-metabolizing microbial assemblages have changed relatively little over hundreds of millions of years. Their discovery as fossilized components of the seven gypsiferous units reported suggests that primary bottom-nucleated gypsum represents a promising target in the search for evidence of past life on Mars. Key Words: Confocal laser scanning microscopy-Gypsum fossils-Mars sample return missions-Raman spectroscopy-Sample Analysis at Mars (SAM) instrument-Sulfuretum. Astrobiology 12, 619-633.  相似文献   

15.
本文提出了铅化合物催化双基推进剂燃烧的反应历程。充分说明这类化合物是最终通过提高燃烧表面处嘶嘶区温度梯度提高燃速的。本文还提出了“铅化合物有通过增加燃烧表面上碳质物量增加燃速的一面,还有通过减少碳质物抑制燃速增加的一面”这一新的论点及抑制碳质物增加的反应并阐明了压力对这种抑制能力的影响。最后根据本文提出的作用机理及传热原理圆满解释了超速、平平和/或麦撒效应。  相似文献   

16.
Defining locations where conditions may have been favorable for life is a key objective for the exploration of Mars. Of prime importance are sites where conditions may have been favorable for the preservation of evidence of prebiotic or biotic processes. Areas displaying significant concentrations of the mineral hematite (alpha-Fe2O3), recently identified by thermal emission spectrometry, may have significance in the search for evidence of extraterrestrial life. Since iron oxides can form as aqueous mineral precipitates, the potential exists to preserve microscopic evidence of life in iron oxide-depositing ecosystems. Terrestrial hematite deposits proposed as possible analogs for hematite deposits on Mars include massive (banded) iron formations, iron oxide hydrothermal deposits, iron-rich laterites and ferricrete soils, and rock varnish. We report the potential for long-term preservation of microfossils by iron oxide mineralization in specimens of the approximately 2,100-Ma banded iron deposit of the Gunflint Formation, Canada. Scanning and analytical electron microscopy reveals micrometer-scale rods, spheres, and filaments consisting predominantly of iron and oxygen with minor carbon. We interpret these objects as microbial cells permineralized by an iron oxide, presumably hematite. The confirmation of ancient martian microbial life in hematite deposits will require the return of samples to terrestrial laboratories. A hematite-rich deposit composed of aqueous iron oxide precipitates may thus prove to be a prime site for future sample return.  相似文献   

17.
Cavalazzi B 《Astrobiology》2007,7(2):402-415
The biologic origin of objects with microbe-like morphologies from the oldest preserved terrestrial sedimentary rocks remains a matter of controversy. Their biogenicity has been questioned, as well as the claim that they are convincing evidence of early life. Though minerals with microbe-like morphologies represent ambiguous evidence of life, they are, in a number of conditions, the only achievable information. In this study, the focused ion beam (FIB) electron microscopy technique was used for nano and micrometer-scale high-resolution imaging and in situ microsectioning of filamentous microfossils. The structural elements of these filaments, their spatial relationships with the host rock, and artifacts produced by alteration of the original morphology due to laboratory sample processing have been clearly defined. The in situ sectioning provided a means by which to investigate surface and subsurface microstructures and perform different analytical techniques on the same object, which minimizes sample destruction and avoids excessive manual handling and exposure of the specimen during analysis. Improvement in the morphological and compositional evaluation of the filaments has facilitated the development of a hypothesis regarding the metabolic pathway of the filamentous microfossils preserved in the Middle Devonian-aged Hollard Mound deposit, Anti-Atlas, Morocco. The results of this study demonstrate the potential of the FIB/SEM (scanning electron microscopy) system for detecting microbial-scale morphologies.  相似文献   

18.
Meteoroids that dominate the Earth's extraterrestrial mass influx (50-300 microm size range) may have contributed a unique blend of exogenous organic molecules at the time of the origin of life. Such meteoroids are so large that most of their mass is ablated in the Earth's atmosphere. In the process, organic molecules are decomposed and chemically altered to molecules differently from those delivered to the Earth's surface by smaller (<50 microm) micrometeorites and larger (>10 cm) meteorites. The question addressed here is whether the organic matter in these meteoroids is fully decomposed into atoms or diatomic compounds during ablation. If not, then the ablation products made available for prebiotic organic chemistry, and perhaps early biology, might have retained some memory of their astrophysical nature. To test this hypothesis we searched for CN emission in meteor spectra in an airborne experiment during the 2001 Leonid meteor storm. We found that the meteor's light-emitting air plasma, which included products of meteor ablation, contained less than 1 CN molecule for every 30 meteoric iron atoms. This contrasts sharply with the nitrogen/iron ratio of 1:1.2 in the solid matter of comet 1P/Halley. Unless the nitrogen content or the abundance of complex organic matter in the Leonid parent body, comet 55P/Tempel-Tuttle, differs from that in comet 1P/Halley, it appears that very little of that organic nitrogen decomposes into CN molecules during meteor ablation in the rarefied flow conditions that characterize the atmospheric entry of meteoroids approximately 50 microm-10 cm in size. We propose that the organics of such meteoroids survive instead as larger compounds.  相似文献   

19.
The delivery of extraterrestrial organic materials to primitive Earth from meteorites or micrometeorites has long been postulated to be one of the origins of the prebiotic molecules involved in the subsequent apparition of life. Here, we report on experiments in which vacuum UV photo-irradiation of interstellar/circumstellar ice analogues containing H(2)O, CH(3)OH, and NH(3) led to the production of several molecules of prebiotic interest. These were recovered at room temperature in the semi-refractory, water-soluble residues after evaporation of the ice. In particular, we detected small quantities of hydantoin (2,4-imidazolidinedione), a species suspected to play an important role in the formation of poly- and oligopeptides. In addition, hydantoin is known to form under extraterrestrial, abiotic conditions, since it has been detected, along with various other derivatives, in the soluble part of organic matter of primitive carbonaceous meteorites. This result, together with other related experiments reported recently, points to the potential importance of the photochemistry of interstellar "dirty" ices in the formation of organics in Solar System materials. Such molecules could then have been delivered to the surface of primitive Earth, as well as other telluric (exo-) planets, to help trigger first prebiotic reactions with the capacity to lead to some form of primitive biomolecular activity.  相似文献   

20.
While the Apex chert is one of the most well-studied Archean deposits on Earth, its formation history is still not fully understood. Here, we present Raman spectroscopic data collected on the carbonaceous material (CM) present within the matrix of the Apex chert. These data, collected within a paragenetic framework, reveal two different phases of CM deposited within separate phases of quartz matrix. These multiple generations of CM illustrate the difficulty of searching for signs of life in these rocks and, by extension, in other Archean sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号