首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为可重复使用运载器(RLV)设计的双燃料/双膨胀火箭发动机在过去的十几年中表现出色。其高密度推进剂丙烷和液氢燃料使发动机干质量大大减轻,加之尺寸小、质量轻及独特的燃烧室/喷管几何形状和涡轮泵组件使干质量进一步大幅度降低。该发动机的其它设计特征也使其研制,操作费用减至最少。  相似文献   

2.
本文描述 RS—2100全流量分级燃烧火箭发动机的概念设计。这种发动机用于单级入轨可重复使用的运载器(SSTO RLV)上。全流量分级燃烧循环的优点是:涡轮温度低,高压氧化剂涡轮泵结构简单,液氧换热器安全和气体旋转起动坚固耐用(ro-bust gas spin start)。  相似文献   

3.
马杰伟 《火箭推进》2004,30(2):54-58
一项减少重复成本的主要方法就是限制零件数量和简化机械结构.涡轮泵在火箭发动机总成本中占有很大一部分,大约是30%,因此,理应对涡轮泵进行设计简化.对于可贮存的液氧/烃或者液氧/甲烷火箭发动机,把涡轮泵设计成一轴化是有价值的.然而,对于液氧/液氢发动机,由于两推进剂密度之间存在着巨大的差异,因此,最佳方案就是燃料泵和氧化剂泵分别采用不同的转速驱动.在这种方案中,可以仅用一个涡轮来带动液氧和液氢泵,不过两泵之间要通过齿轮来传递转速,例如HM7或RL10发动机就是这样的结构.但是,齿轮在低温环境中的工作是不可靠的,此外,成本和重量也是问题,带有齿轮的涡轮泵适用于低推力发动机,为低功率涡轮泵.目前,低温火箭发动机推力室通常采用两个独立的涡轮泵来供应推进剂,一个涡轮泵是供应液氢,另一个供应液氧(某些俄罗斯的发动机除外).可以采用正反转涡轮,使得氧化剂泵和燃料泵处于单一壳体内.该正反转涡轮设计的约束条件如下:每个转子必须按所需转速驱动相应的泵;每个转子必须传递驱动泵的功率;必须对轴向载荷进行监测,以免轴向推力轴承过载.设计的自由度包括转子半径和涡轮的压力叶栅.本文给出正反转涡轮一个简单的一维理论,考虑了每个转子半径的不同,并对一组同一规格的两个轴流涡轮与正反转涡轮进行了比较.  相似文献   

4.
以RD——0120发动机为基础的可重复使用火箭动力装置   总被引:1,自引:0,他引:1  
美国和俄罗斯在国际上首先开展了低成本运载有效载荷到轨道的研究工作。政府和火箭承包商正在论证和研究未来低成本运载火箭的关键特性,低成本运载火箭的两个关键特性是火箭的可重复使用性和火箭发动机的可操作性。由化学自动化设计局设计生产的 RD—0120 LOX/LH_2发动机已经分析验证了的高性能和先进的可重复使用性,使它成为可重复使用运载火箭(RLV)动力装置的关键候选对象之一。这个高室压(21.86MPa)、高性能(真空比冲4466.9m/s,真空推力1961.67kN)的分级燃烧发动机已经在能源号重型运载火箭上成功地完成了两次飞行。研制期间,发动机的长寿命、推力范围、节流和连续工作时问等特性都经过了验证。这些都是低成本、高可靠、可重复使用推进系统的要求。双组元的 RD—0120发动机通过更换富燃预燃室和增加一个煤油涡轮泵也可以很容易的改造为一个可靠的低成本三组元发动机。为了验证这个双组元发动机高的可操作性和可重复使用性,一个由航空喷气公司、化学自动化设计局和 NASA 马歇尔空间飞行中心合资生产,用于可重复使用运载火箭和单级入轨火箭动力装置的国际计划及三组元发动机可能的关键特性设计正在进行。本文对现在的 RD—0120发动机可操作性和重复使用性的改进进行了阐述。而且对如何更进一步地改进,使 RD—0120发动机成为可重复使用运载火箭推进系统的理想候选对象进行了研究。另外,已经草拟了研制三组元的 RD—0120发动机的研制计划,主要是一个高置信度的飞行演示火箭。  相似文献   

5.
低温箔片轴承技术已经在液氧和液氢涡轮泵中得到了使用。低温箔片轴承提高了涡轮泵的可靠性并降低了费用。液氢和液氧涡轮泵箔片轴承的主要技术已经由 NASA 路易斯研究中心、马歇尔飞行中心和麦道公司进行了试验验证。箔片轴承在液压和液氢中以高的负荷量和宽的转子动态范围内进行了100多次起动/停车试验,总试验时间有好几个小时,箔片轴承液氢涡轮泵和箔片轴承液氧涡轮泵都已进行了验证试验。他们的试验结果表明:箔片轴承稳定性好,可靠性高,可调节范围宽,需要的冷却流量小,箔片轴承涡轮泵可靠性高,而且费用低。  相似文献   

6.
超高速混合陶瓷滚珠轴承转速120000r/min,DN值达到300万。根据日本航空航天技术研究所(NAL)报道,未来的航天飞机将使用重复型发动机。用既小型轻量又性能良好的重复型火箭发动机,使得向燃烧器提供液氢(253℃)液氧(183℃)的超低温推进剂涡轮泵变得高速化。目前的多级式火箭的上面级火箭发动机其重量、性能对发射卫星的有效负荷影响很大,因此,转速100000r/min级的涡轮泵比较适宜,超高速涡轮泵的研究开发在世界上处于领先地位。 航空航天技术研究所(NAL)采用快速冷却的外环导向方式,开发了用氮化硅陶瓷滚珠这样一种混合陶瓷…  相似文献   

7.
某发动机涡轮泵转子高温超速/疲劳试验研究   总被引:2,自引:0,他引:2  
涡轮转子是输送液氢/液氧推进剂的关键组件,其运行状态的好坏将直接影响发动机的性能和可靠性。超速/疲劳试验是转子质量控制、极限强度考核的一种试验方法。针对某发动机涡轮转子开展了高温超速/疲劳试验研究,首先研究了试验用转接器的设计方法,然后基于有限元方法建立了某液体火箭发动机涡轮泵转子高温超速试验的有限元模型,研究了温度对涡轮泵转子振型及临界转速等动特性的影响,分析了转子启动升速过程中常温和高温的振动幅值与支撑应力变化规律。在理论研究基础上开展了转子高温超速/疲劳试验研究,分析了高温状态下涡轮泵转子系统启动升速过程振动幅值的变化规律,研究了温度对涡轮泵转子超速动特性的影响规律。  相似文献   

8.
蓝箭航天液氧甲烷发动机研制进展   总被引:2,自引:2,他引:0       下载免费PDF全文
张小平  严伟 《上海航天》2019,36(6):83-87
探讨了国内外商业航天运载火箭及其发动机的发展情况,研究比较了液氧甲烷、液氧煤油和液氧液氢等推进剂组合,提出液氧甲烷是商业航天、未来可重复使用液体火箭发动机的发展方向和最佳选择。分析了液体火箭发动机推力选择的原则,确定了蓝箭航天液氧甲烷发动机的推力为80 t和8 t。比较了燃气发生器循环、补燃循环及膨胀循环等动力循环方式,选择了燃气发生器循环的技术方案。介绍了蓝箭航天两型液氧甲烷发动机的总体方案、性能指标、技术创新点、用途和研制情况。  相似文献   

9.
日本宇宙科学研究所(ISAS)目前正在研制大机动实验飞行器(HIMES)。该飞行器带火箭发动机,可垂直起飞进入弹道轨道,然后再入大气层,进行滑翔,水平着陆。因而叫做弹道飞行不载人可完全重复使用的单级有翼飞行器。 HIMES采用高燃烧压力的液氢液氧火箭发动机,可将500公斤以上的有效载荷带人250公里高空,并能在空中悬停。HIMES的发射总重量为13.8吨,结构重量(即除去燃料和有  相似文献   

10.
“阿里安”L5是欧洲研制的最重要的中等推力级可贮存的二元推进剂发动机.它采用了多元件喷射器的设计原理,这种喷射器使用多个同轴喷射元件、一个燃料再生冷却燃烧室和一个辐射冷却的喷管扩展段.研制该发动机各部件所运用的技术与MBB-ERNO公司研制“阿里安”HM7液氧/液氢发动机时运用的技术相类似,但由于L5发动机的推进剂具有二元的基本特性,故现有的液氧/液氢技术只能部分采纳.对此MBB-ERNO公司提出了一项实验性计划来论证同轴式喷射器原理的可行性.L5发动机的研制工作包括整台发动机的设计及推进分系统的布局.叙述L5发动机的设计、性能和工作特性,以及研制状况,重点介绍目前正在研制的喷射器.  相似文献   

11.
TRW 公司已经设计、制造并准备测试一台海平面推力为2.89MN 的液氧/液氢火箭发动机.这台发动机的设计给出这样一个启示:对于大型助推火箭发动机,可以通过少量地降低发动机性能而使其制造成本大幅度降低.这种超低成本的助推液体火箭发动机具有极强的生命力。这台泵压式发动机设计的特点是室压低(4.83MPa),从而使发动机主要部件(包括燃烧室、涡轮和供应系统)的成本比高室压设计低得多。这台发动机综合了 TRW 公司论证的针栓式(针阀式)喷注器设计、加衬烧蚀燃烧室/喷管和低成本箔轴承涡轮泵,它们都大幅度地减小了发动机的部件数量、制造成本和试验成本。本文介绍了这台发动机的设计、制造和工作特点,并着重强调了它能大幅度降低发动机制造和试验成本的独有特点。本文还描述了 TRW 公司 Readondo Beach,CA 工厂从计划开始,在不到12个月的时间内设计、制造并组装成功的全尺寸试验样机。  相似文献   

12.
液氧/甲烷液体火箭发动机燃烧研究最新进展   总被引:1,自引:0,他引:1  
仲伟聪 《火箭推进》2004,30(1):52-57
近来,俄罗斯和欧洲正在联合进行一个名为“VOLGA“的研究计划.其主要目标是用于可重复使用运载火箭或大型助推器的液氧/甲烷发动机的概念研究.SNECMA的主要工作是研究预燃室/燃气发生器的可重复使用技术,在液氧/液氢“火神“燃气发生器研制过程中,获得了很多低温推进剂的燃烧经验,但液氧/甲烷富燃燃烧带来了许多新的问题:如喷注性能、燃烧效率、稳定性、积碳形成等.为了解决上述问题,目前正在进行实验和理论两方面的研究.ONERA的马斯喀特(Ma scotte)试验装置就被改造用于研究甲烷的燃烧.最初的研究完成了对低混合比和压力范围在0.1MPa到6.0MPa下的液甲烷和气甲烷同轴喷注技术的评估.各项研究在继续进行,以求对液氧/甲烷低温燃烧问题进行完整的描述和理解.除了上述研究外,还在进行计算流体力学数值模拟工具的更新工作,但是只有一些非常特殊的工况点才需要进行修改工作,这是因为过去的火箭发动机燃烧研究工作已经对液氧/液氢低温燃烧特性有了深入的理解,有很多研究成果可用于液氧/甲烷燃烧研究.目前的主要问题集中在甲烷的高频燃烧稳定性和燃烧化学效应方面.在一个称为INCA的新的燃烧研究计划框架内将对这些问题进行研究.  相似文献   

13.
高性能的俄罗斯液氧/煤油发动机NK-33   总被引:1,自引:0,他引:1  
NK—33液氧/煤油火箭发动机是由萨莫拉国家科研生产联合体——“TRUD”为俄罗斯N—1登月火箭研制生产的。这种四级型的 N—1火箭所使用的发动机均为液氧/煤油火箭发动机,其中30台 NK—33发动机用于第一级,8台与 NK—33发动机类似而面积比更大的 NK—43发动机用于第二级,四台 NK—39发动机用于第三级,一台除带有常平座外类似于 NK—39发动机的 NK—31发动机用于第四级。所有上述的液氧/煤油发动机都是六十年代研制的,均采用一个富氧预燃室产生涡轮燃气,气氧与热煤油经过分级燃烧喷注器在8.964~15.169MPa 绝压下燃烧。NK—33、NK—43和 NK—39发动机可控制发动机簇的推力,并提供火箭的推力向量控制。由于采用高室压,NK—33发动机的设计实现了较高的性能和很轻的结构重量。富氧预燃室的采用,使得发动机有较高的燃烧效率和燃烧稳定性。在预燃室中,全部的液氧以58:1的混合比燃烧,所产生的628.15K 的富氧燃气全部用来驱动涡轮泵的涡轮,然后进入喷注器和燃烧室。NK—33发动机的结构牢固可靠,可实现很高的泵出口压力和14.480MPa 绝压的高燃烧室压力,因此,其面积比可达27:1,可产生2913.57m/s 的海平面比冲和3274.1m/s 的真空比冲。气氧和热煤油喷注器可保证发动机推力降至23%推力水平时仍能稳定燃烧。各次试车之间,无需使用溶解剂清洗 NK—33发动机的零件,也没有发动机零件的碳化现象,这是由于取消了富燃料气发生器和降低推力室冷却套中的煤油温度的缘故。NK—33发动机在用于飞行计划以前进行了充分的试验,共进行了910多次试车,累积点火时间达211,800秒。研制和鉴定完成后,先后共交付了250台 NK—33发动机,可靠性指标达到0.996。已经证实,NK—33发动机是一种高性能的助推发动机。它结构牢固可靠;所采用的技术,到目前为止,未见于美国的发动机。NK—33发动机可凭借低成本和高飞行可靠性改进运载火箭的性能。  相似文献   

14.
双喷管发动机象双喉部、双膨胀发动机一样,在先进的天地运输系统中得到验证。改进的航天飞机和全新火箭亦得益于这些先进的发动机。本文将对单燃料、双燃料以及双喷管发动机在设计方面所取得的进展作一总结。双喷管发动机的推进剂为:液氧/煤油/液氢、液氧/液丙烷/液氢、液氧/液甲烷/液氢、液氧/液氢/液氢、液氧/液甲烷/液甲烷、液氧/液丙烷/丙烷以及四氧化二氮/一甲基肼/液氢,发动机推力为889.6~2980.3kN。  相似文献   

15.
目前,许多单级入轨火箭作为一种可能降低向低地轨道发射有效载荷成本的运载手段,正在进行配制方面的鉴定分析.NASA 已设计出一种可操作的,使用液氧/媒油/液氢三组元发动机作为单级入轨火箭的方案.Thiokol 对这种使用捆绑式混合推进系统来增加轨道有效载荷能力的运载火箭进行了评估.NASA 将这种先驱火箭作为一种方案对单级入轨火箭的技术进行了论证。这种火箭称为 X-2000。它的主要推进系统使用液氧/煤油和液氧/液氢两种发动机,Thiokol 通过用混合发动机替代液氧/煤油发动机对主推进系统进行了新的探讨。它采用的混合技术在马歇尔航天中心(MSFC)正在进行验证。因此,混合推进系统是一种有效 SSTO 的推进系统.  相似文献   

16.
国外液氧/甲烷发动机的最新进展   总被引:1,自引:0,他引:1  
<正>液氧/甲烷火箭发动机具有推进剂资源丰富、可重复使用、成本低、无毒无污染、使用维护方便、综合性能好等优点,世界各国一直未曾停止过关于液氧/甲烷发动机的研究,美国、俄罗斯和欧洲围绕液氧/甲烷发动机开展了许多研究工作。近年来,国外已经出现多个以液氧/甲烷发动机(包括太空探索技术公司的"猛禽"发动机、蓝色起源公司的BE-4发动机以及俄罗斯的RD-0162发动机等)为动力的火箭设计方案,这些设计方案大都具有重复使用特征。  相似文献   

17.
先进的液氧(简称ALO)涡轮泵,用于推力为222.4kN的上面级膨胀循环发动机,它的结构尺寸和性能特征是由Pratt-Whitney公司制定的,以支持整体高收益的火箭推进技术项目(简称IHPRPT)。ALO涡轮泵是由俄罗斯的Voronezh化学自动化设计局(简称CADB)设计的,该设计局是Pratt-Whitney公司的合作伙伴。ALO涡轮泵是一种为上面级液体火箭发动机设计的高性能、低成本、高可靠性的涡轮装置,所提供液氧的流量为99Ib/s(45kg/s),压力为1800psi(121bar)。该涡轮泵与泵前的增压泵一起联合使用。按预先设想,ALO涡轮泵先进之处不仅包括高可靠性和低制造成本,而且其设计和开发费用也被压缩至最低限度。设计、制造和零件的标准测试是在一个较短的周期内(大约1.5年)完成的,花费了少量的元器件和原材料。这可能部分归功于CADB对以前相似涡轮泵充分的研究。  相似文献   

18.
航天动力发展的生力军——液氧甲烷火箭发动机   总被引:2,自引:0,他引:2  
液氧甲烷火箭发动机具有成本低、性能好、重复使用、维护方便等优点,是极具发展潜力的未来航天动力。北京航天动力研究所在十一五期间开展了60t级液氧甲烷火箭发动机原型样机研究。进行了甲烷液氧气液缩尺喷注器燃烧试验和甲烷液氧液液喷注器低混合比燃烧试验,了解了甲烷液氧的燃烧特性、点火特性等。开展了涡轮泵和阀门等组件适应性研究。研究表明,液氧甲烷发动机燃烧稳定性好,易于维护,是未来航天的理想动力选择之一。  相似文献   

19.
LE-5B 发动机是 LE-5系列(LE-5、LE-5A)用于 H-IIA 火箭第二级的新型液氧/液氢发动机,经四年时间研制成功,具有高推力、高可靠性和低成本的特点。本文将提供 LE-5B 发动机研制详情。  相似文献   

20.
液氢作为火箭推进剂的燃料,在国际上早被广泛使用。美国航天飞机为主发动机提供动力的推进剂就是54m~3液氢和145m~3液氧。我国从60年代开始研制和使用液氢液氧发动机,长征三号运载火箭的第三级就使用了这种高能低温液氢液氧火箭发动机。氢的易燃易爆特性是其安全使用最主要的危险。国内外在其生产、贮存、使用、发射等过程中,都曾  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号