首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Some results of studying the electrons with energies of tens to hundreds of keV at the low and near- equatorial geomagnetic latitudes by using the instruments Sprut-V and Ryabina-2 onboard the Mirspace station in 1991 are presented. It is found that at L< 1.2 the enhanced electron fluxes are sporadically detected, being localized within three longitudinal intervals, 180° W–0°–15° E, 90°– 120° E, and 160° E–180°–135° W. The most intense electron fluxes are observed at the lower edge of the near-equatorial boundary of the inner radiation belt on longitudes of the South Atlantic Anomaly between 14 and 20 h MLT. The occurrence of electron bursts does not depend on the geomagnetic disturbance level. A hardening of the electron spectra is observed near the geomagnetic equator. At L< 1.1, the more energetic particles are located closer to the geomagnetic equator. The results are compared with the data on the low-frequency waves and fields at low and near-equatorial latitudes obtained by the Ariel-4and San Marco Dsatellites, as well as by the spacecraft and ground-based observations of the thunderstorm global distribution. The thunderstorms are considered as a possible source of electron production near the geomagnetic equator.  相似文献   

2.
Magnetic Storms in October 2003   总被引:1,自引:0,他引:1  
《Cosmic Research》2004,42(5):489-535
Preliminary results of an analysis of satellite and ground-based measurements during extremely strong magnetic storms at the end of October 2003 are presented, including some numerical modeling. The geosynchronous satellites Ekspress-A2and Ekspress-A3, and the low-altitude polar satellites Coronas-F and Meteor-3M carried out measurements of charged particles (electrons, protons, and ions) of solar and magnetospheric origin in a wide energy range. Disturbances of the geomagnetic field caused by extremely high activity on the Sun were studied at more than twenty magnetic stations from Lovozero (Murmansk region) to Tixie (Sakha-Yakutia). Unique data on the dynamics of the ionosphere, riometric absorption, geomagnetic pulsations, and aurora observations at mid-latitudes are obtained.  相似文献   

3.
Satellite data on the position of maximum L m of the belt of relativistic electrons during strong storms, obtained at low altitudes (∼500 km) and at high altitudes (near the geomagnetic equator plane), are compared (L is the McIlwain parameter). Both at low and high altitudes the maximum of the storm belt of relativistic electrons is formed on the outer edge of the ring current. It is shown that the geomagnetic field can substantially deviate from dipole configuration not only at the geomagnetic trap periphery, but at its core as well (at L ∼ 2.5–3.5), and these deviations are nonlinear. Simultaneous measurements of the fluxes of relativistic electrons at low and high altitudes can serve for estimation of the real shape of magnetic field lines at L < 4 during geomagnetic disturbances.  相似文献   

4.
The data of measuring the plasma density in the topside ionosphere for the South-Atlantic geomagnetic anomaly region are presented. It is shown that irregular plasma structures with a wide spectrum of irregularity scale (including large-scale structures with a dimension of order of some hundred kilometers) can be generated in the fields of electrostatic turbulence in inhomogeneous plasma.  相似文献   

5.
We have made a generalization of experimental data on the fluxes of trapped protons that were detected by various instruments on three low-orbit satellites (NOAA-17, Universitetskii-Tatiana, and CORONAS-F) during April of 2005. Based on these data, a new quantitative model is suggested to describe the fluxes of trapped protons. It allows one, using analytical expressions, to predict the fluxes of protons with energy from 30 keV to 140 MeV under quiet geomagnetic conditions in the period close to the solar activity minimum at drift shells L = 1.14–1.4. The suggested model establishes differential directional fluxes of protons as a function of pitchangle on the geomagnetic equator and takes into account the anisotropy of trapped particles on the lower boundary of the Earth’s radiation belt.  相似文献   

6.
Variations in fluxes of quasi-trapped energetic protons were studied on the basis of the data of the CORONAS-I satellite. These variations are characterized by an increase in the proton fluxes with E P ≥ 1 MeV both in the vicinity of the geomagnetic equator and in the high-latitude region of the magnetosphere. The analysis of structural features of the proton distributions in the regions at L ~ 1–1.1; 3 < L < 4; and L > 4, was performed and made it possible to detect reliably the type of the proton flux increase in this region. The mechanisms of particle scattering leading to the precipitation of energetic protons under conditions of various types of geomagnetic disturbances are considered.  相似文献   

7.
In the framework of the approximation of geometric optics, the peculiarities of VLF-wave propagation in the Earth’s ionosphere and magnetosphere during the creation of large-scale artificial plasma irregularities by heating facilities such as HAARP and “Sura” in the ionosphere are studied. For calculation of ray trajectories, the profile of the concentration and ion composition of plasma is taken by calculating the SAMI2 ionospheric model, which was modified to take the influence on the ionosphere of the HF emissions of heating facilities into account. As a result of the influence of the heating facilities on the ionosphere, a region could occur with an increased plasma concentration that is stretched out along the geomagnetic field (up to heights on the order of the Earth’s radius) with small dimensions across the field (~1°). The ray trajectories of waves that propagate from heights of about 100 km from different initial points in the region where such a disturbance has been created with different initial inclination angles of the wave normal are studied in this paper. Both lightning discharges and modulated HF heating of the ionosphere could be the sources of such waves. It is shown on the basis of the performed analysis that the presence of such disturbances in density can lead to a substantial changes in wave-propagation trajectories, in particular, to efficient channeling of VLF waves in the disturbance region and an increase in the interval of the initial propagation angles of waves, which can reach the ionosphere in the opposite hemisphere.  相似文献   

8.
Variations of turbulence properties of the plasma sheet during geomagnetic substorms are investigated using observations of the INTERBALL Tail Probe satellite. The periods are chosen when the satellite was inside the plasma sheet. Fluctuations of the plasma bulk velocity across the plasma sheet are studied for the growth, expansion, and recovery phases of geomagnetic substorms on October 14, 1997; October 30, 1997; and December 16, 1998. It was demonstrated that the level of turbulence increases considerably after the onset of the substorm expansion phase and slowly decreases nearly to the presubstorm level later. The correlation times of plasma fluctuations in the Z-direction are estimated, and diffusion coefficients in the Z-direction are calculated.  相似文献   

9.
The degree of uncertainty that arises when mapping high-orbit satellites of the Cluster type into the ionosphere using three geomagnetic field models (T89, T98, and T01) has been estimated. Studies have shown that uncertainty is minimal in situations when a satellite in the daytime is above the equatorial plane of the magnetosphere at the distance of no more than 5 RE from the Earth’s surface and is projected into the ionosphere of the northern hemisphere. In this case, the dimensions of the uncertainty region are about 50 km, and the arbitrariness of the choice of the model for projecting does not play a decisive role in organizing satellite support based on optical observations when studying such large-scale phenomena as, e.g., WTS, as well as heating experiments at the EISCAT heating facility for the artificial modification of the ionosphere and the generation of artificial fluctuations in the VLF band. In all other cases, the uncertainty in determining the position of the base of the field line on which the satellite is located is large, and additional information is required to correctly compare the satellite with the object in the ionosphere.  相似文献   

10.
We consider the influence of harmonics generated by an internal gravity wave (IGW) on the formation of nonlinear disturbances in the ionospheric E region. It is shown that the response of the lower ionosphere to the IGW propagation should be less efficient than the action of the IGW on the ionospheric F region. Nevertheless, if there are some thin layers (e.g., sporadic E layers) in the lower ionosphere, the response can be amplified; its amplitude is determined by the sharpness of the density gradient as compared with the characteristic scale of the atmosphere.  相似文献   

11.
Results of radiophysical and magnetometric observations of dynamical processes in the ionosphere and geomagnetic field that followed launches of four rockets of different power and made from different launching sites are analyzed. It is found that the rocket launches were accompanied by an intensification of wave activity in the ionosphere and geomagnetic field. The medium reactions from various sources (various rockets) were overlapping, which made their identification more difficult. Both ionospheric and geomagnetic disturbances have, most probably, two groups of propagation velocities: about 1.2–1.7 km s−1 and 440–760 m s−1. Slow MHD waves and internal gravity waves corresponded to these velocities.  相似文献   

12.
Rothkaehl  H.  Stanisławska  I.  Blecki  J.  Zbyszynski  Z. 《Cosmic Research》2003,41(4):340-344
The polar cusp being a region of the free access of the solar wind into the inner magnetosphere is also the site of turbulent plasma flow. The cusp area at low altitudes acts like a focus of a variety type of instability and disturbances from different regions of the Earth. Daily f 0 F2 frequencies are discussed regarding the cusp position. The high time resolution wave measurements together with electron and ion energetic spectra measurements registered on the board the Freja satellite and Magion-3 and the electron density at the peak of f 0 F2 layers collected from ground-based ionosonde measurements were used to study the response of ionospheric plasma within the cusp–cleft region to the strong geomagnetic storm. In this paper we present the response of the ionospheric plasma to the disturbed conditions seen in the topside wave measurements and in the ionospheric characteristics maps obtained from the ground-based VI network. The need of the cusp feature model for radio communication purposes is advocated.  相似文献   

13.
Surkov  V. V.  Galperin  Yu. I. 《Cosmic Research》2000,38(6):562-573
A solution to the problem of current spreading is constructed in the case of relaxation of electric charges, which have arisen in the mesosphere for one reason or other. These currents penetrate into the conductive region with anisotropic conductivity of the D- and E-layers of the ionosphere, being transformed to a MHD-wave that propagates into the magnetosphere. Based on this solution, the form and spectrum of the generated MHD signal are calculated for Alfvenic and magnetosonic modes coming out to the ionosphere and magnetosphere. Electric charges and currents can arise, for example, in the space between a thunderstorm cloud and the ionosphere, or between the shock wave from a ground explosion and the ionosphere. Some signal parameters accepted in the model are close to those expected for high-altitude electric discharges of the Red Sprite type. The conditions are determined under which the Alfven impulse with an amplitude of up to 100 nT propagates in the magnetosphere above high-altitude discharge of this type. Such an impulse was recorded by the AUREOL-3 satellite after the ground explosion MASSA-1. Recently, this impulse was hypothesized to originate as a result of a high-altitude electric discharge. The hypothesis on a similar MHD pulse allows one to explain in a semiquantitative way the short burst of electron field-aligned acceleration observed by the DE-2 satellite over the Debbie hurricane. The high-altitude atmospheric discharge of this type can be a powerful, though short-time and local, source of electrons with kiloelectronvolt energies at low and middle latitudes. One could expect that such an effect causes a modified character of the so-called Trimpi-effect (a short-term disturbance of propagation of VLF waves in the ionosphere), and thus, it can be observable.  相似文献   

14.
A mathematical model of the high-latitude F-region, taking the ionospheric plasma convection into account, is used for modeling a response of the auroral F-region to irradiation by powerful high-frequency (HF) radiowaves. The model enables us to calculate the time variations in the profiles of the electron concentration, the velocity of positive ions, and the ion and electron temperatures in the part of a magnetic-flux tube moving over an artificial ionospheric heater under the action of a convective electric field. The modeling was carried out for a part of the magnetic flux tube intersecting the F-layer irradiated by the Norwegian heater at Tromsö when it is located near the midnight magnetic meridian. The calculations were made for the equinox conditions under the high solar and low geomagnetic activity. The results of our modeling show that substantial variations in the profiles of the electron temperature, the velocity of positive ions, and the electron concentration can be produced in the nighttime high-latitude F-layer due to HF heating. The perturbation caused by a 20 s rectangular pulse should exist for about 20 min at the level of the F-layer maximum. The disturbed plasma volume can leave the region irradiated by the heater and move away for over 500 km within the above-mentioned time period.  相似文献   

15.
Bezrukikh  V. V.  Kotova  G. A.  Lezhen  L. A.  Lemaire  J.  Pierrard  V.  Venediktov  Yu. I. 《Cosmic Research》2003,41(4):392-402
We present the results of temperature and density measurement of plasmaspheric protons under quiet and disturbed conditions in the night and dayside sectors of the plasmasphere obtained with the Auroral Probe/Alpha-3 instrument during September 1996 and January 1997. According to the experimental data, the proton temperature in the night sector of the plasmasphere depends on the level of geomagnetic disturbance: it is found that at night hours the values of temperatures inside the plasmasphere at 2.4 < L < 3.5 decreased considerably after the commencement of a geomagnetic storm. The temperature decrease, as a rule, was accompanied by the formation of a flat plateau on the density distribution n(L) at 2.4 < L < 3.5. The above experimental facts (decreasing proton temperature and formation of a flat part on the n(L) distribution) allow us to conclude that the decrease in the proton temperature in the night sector of the plasmasphere connected with magnetic disturbances is caused by the filling of field tubes (depleted after the commencement of the storm) with colder ionospheric plasma. The proton temperature in the dayside sector of the plasmasphere virtually does not depend on the level of the geomagnetic disturbance.  相似文献   

16.
The features of the excitation of spatially localized long-period (10–15 min) irregular pulsations with a maximum amplitude of ~200 nT at a geomagnetic latitude of 66° in the morning sector 5 MLT are considered. Fluctuations were recorded against the background of substorm disturbances (maximum AE ~ 1278 nT). Antiphase variations of plasma density and magnetic field accompanied by vortex disturbances of the magnetic field both in the magnetosphere and the ionosphere have been recorded in the magnetosphere in this sector. Compression fluctuations corresponding to a slow magnetosonic wave have been recorded in the interplanetary medium in the analyzed period. It is assumed that pulsations have been excited in the localization of the cloud of injected particles in the plasma sheet by compression fluctuations caused by variations of the dynamic pressure of solar wind.  相似文献   

17.
We present the characteristics of short (duration less than 1 min) increases of the counting rate of electrons with energies >0.08 MeV observed in low-latitude (L < 2.0) regions of near-Earth space in the course of the GRIF experiment on the Spektr module of the Mir orbital station. The measurements were carried out using a set of instruments including X-ray and gamma-ray spectrometers, as well as detectors of electrons, protons, and nuclei with large and small geometrical factors, which allowed one to detect the fluxes of charged particles both in the region of the Earth’s radiation belts and in regions close to the geomagnetic equator. As a result of more than 1.5 years of observation, it is demonstrated that short increases in the intensity of electrons of subrelativistic energies are detected not only in the regions of the near-Earth space known as “precipitation zones” (1.7 < L < 2.5), but in high-latitude regions (up to the geomagnetic equator, L < 1.1) as well. Two types of increases of the electron counting rate are found: either fairly regular increases repeating on successive orbits or increases local in time. The latter type of increases can be caused by a short enhancement of electron flux on a given drift shell. The results of our measurements have shown that the duration of the detected increases in intensity can be rather short, as little as 20–30 s. Therefore, in the case of large amplitudes, such increases of the counting rate of electrons can imitate astrophysical events of the type of cosmic gamma-ray bursts in the detectors of hard X-ray and gamma radiation.  相似文献   

18.
The results of detecting quasi-stationary electric fields onboard the Kosmos-1809 satellite and observing sea storms and typhoons are analyzed jointly. We have detected an amplification of the electric field in the low-latitude ionosphere that is related to the preparatory stage and development of tropical storms and typhoons. In this case, the electric field strength can reach 20 mV/m, an anomalously high value for the low-latitude and near-equatorial ionosphere. High-accuracy estimates of the electric field strength are made on the basis of a model of its origination as a result of the generation of an extraneous electric current in the disturbed region of the lower atmosphere and the impact of these currents on the global atmosphere–ionosphere system of currents.  相似文献   

19.
将电离层扰动从其背景中分离出来一直是电离层扰动研究的核心与难点。文章综述白谱法在电离层扰动研究方面取得的进展,主要有:1)白谱法比常规电离层扰动提取方法能更好地描述磁暴期间电离层的扰动,利用白谱法构建的电离层天气单站指数 Js、全球指数 Jp 和区域指数Jr与 Dst 指数之间存在极好的关联性,可以直接利用 Dst 来对 Jp进行预报。2)白谱法同样适合研究强磁暴期间的电离层异常弱响应。对比研究发现,电离层在强磁暴条件下的弱响应不依赖于采用的扰动提取方法本身,并且该现象的出现与纬度、地方时及磁暴前期条件强烈相关。3)白谱法是研究地磁平静期由其他扰动源引起电离层扰动的有力工具。基于白谱法构建的Js分布图能够很好地反映台风过程中电离层扰动的空间特征。  相似文献   

20.
The results of the satellite low-latitude and mid-latitude measurements of the disturbed plasma concentration, electron temperature, and quasi-stable electric field at heights of ~900 km after sunset are discussed. It is shown that the sharp fronts of changes in the electron temperature and plasma density observed in the experiment onboard the Intercosmos-Bulgaria-1300 satellite in the low-latitude (and equatorial) outer ionosphere can be related to damping of the oscillations of plasma electrons at local decreases of the plasma density (plasma “pits”) and formation of the vortex plasma structures at density and temperature gradients, which promotes conservation of ionosphere irregularities and makes the fronts of concentration variations steeper. Nonmonotonic variations in the plasma conductivity for the ionosphere currents in unstable plasma can be a cause of observed nonmonotonic disturbances of the vertical component of the “constant” electric field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号