首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Precise point positioning (PPP) usually takes about 30?min to obtain centimetre-level accuracy, which greatly limits its application. To address the drawbacks of convergence speed and positioning accuracy, we develop a PPP model with integrated GPS and BDS observations. Based on the method, stations with global coverage are selected to estimate the fractional cycle bias (FCB) of GPS and BDS. The short-term and long-term time series of wide-lane (WL) FCB, and the single day change of narrow-lane (NL) FCB are analysed. It is found that the range of GPS and BDS non-GEO (IGSO and MEO) WL FCB is stable at up to a 30-day-time frame. At times frame of up to 60?days, the stability is reduced a lot. Whether for short-term or long-term, the changes in the BDS GEO WL FCB are large. Moreover, BDS FCB sometimes undergoes a sudden jump. Besides, 17 and 10 stations were used respectively to investigate the convergence speed and positioning errors with six strategies: BDS ambiguity-float PPP (Bfloat), GPS ambiguity-float PPP (Gfloat), BDS/GPS ambiguity-float PPP (BGfloat), BDS ambiguity-fixed PPP (Bfix), GPS ambiguity-fixed (Gfix), and BDS/GPS ambiguity-fixed (BGfix). The average convergence speed of the ambiguity-fixed solution is greatly improved compared with the ambiguity-float solution. In terms of the average convergence time, the Bfloat is the longest and the BGfix is the shortest among these six strategies. Whether for ambiguity-float PPP or ambiguity-fixed PPP, the convergence reduction time in three directions for the combined system is the largest compared with the single BDS. The average RMS value of the Bfix in three directions (easting (E), northing (N), and up (U)) are 2.0?cm, 1.5?cm, and 5.9?cm respectively, while those of the Gfix are 0.8?cm, 0.5?cm, and 1.7?cm. Compared with single system, the BDS/GPS combined ambiguity-fixed system (BGfix) has the fastest convergence speed and the highest accuracy, with average RMS as 0.7?cm, 0.5?cm, and 1.9?cm for the E, N, U components, respectively.  相似文献   

2.
Integer ambiguity resolution (IAR) can improve precise point positioning (PPP) performance significantly. IAR for PPP became a highlight topic in global positioning system (GPS) community in recent years. More and more researchers focus on this issue. Progress has been made in the latest years. In this paper, we aim at investigating and demonstrating the performance of a global zero-differenced (ZD) PPP IAR service for GPS users by providing routine ZD uncalibrated fractional offsets (UFOs) for wide-lane and narrow-lane. Data sets from all IGS stations collected on DOY 1, 100, 200 and 300 of 2010 are used to validate and demonstrate this global service. Static experiment results show that an accuracy better than 1 cm in horizontal and 1–2 cm in vertical could be achieved in ambiguity-fixed PPP solution with only hourly data. Compared with PPP float solution, an average improvement reaches 58.2% in east, 28.3% in north and 23.8% in vertical for all tested stations. Results of kinematic experiments show that the RMS of kinematic PPP solutions can be improved from 21.6, 16.6 and 37.7 mm to 12.2, 13.3 and 34.3 mm for the fixed solutions in the east, north and vertical components, respectively. Both static and kinematic experiments show that wide-lane and narrow-lane UFO products of all satellites can be generated and provided in a routine way accompanying satellite orbit and clock products for the PPP user anywhere around the world, to obtain accurate and reliable ambiguity-fixed PPP solutions.  相似文献   

3.
The state-space representation (SSR) product of satellite orbit and clock is one of the most essential corrections for real-time precise point positioning (RTPPP). When it comes to PPP ambiguity resolution (PPP-AR), the fractional cycle bias (FCB) matters. The Japan Aerospace Exploration Agency (JAXA) has developed a multi-GNSS (i.e., global navigation satellite system) advanced demonstration tool for orbit and clock analysis (MADOCA), providing free and precise orbit and clock products. Because of the shortage of relevant studies on performance evaluation, this paper focuses on the performance assessment of RTPPP and PPP-AR by real-time and offline MADOCA products. To begin with, the real-time MADOCA products are evaluated by comparing orbit and clock with JAXA final products, which gives an objective impression of the correction. Second, PPP tests in static and simulated kinematic mode are conducted to further verify the quality of real-time MADOCA products. Finally, the offline MADOCA products are assessed by PPP and PPP-AR comparisons. The results are as follows: (1) Orbit comparisons produced an average error of about 0.04–0.13 m for the global positioning system (GPS), 0.14–0.16 m for the global navigation satellite system (GLONASS), and 0.07–0.08 m for the quasi-zenith satellite system (QZSS). The G15 satellite had the most accurate orbit, with a difference of 0.04 m between the JAXA orbit products and MADOCA’s counterpart, while the R07 satellite had the least accurate orbit with a difference of 0.16 m. Clock products had an accuracy of 0.4–1.3 ns for GPS, 1.4–1.6 ns for GLONASS, and 0.7–0.8 ns for QZSS in general. The G15 satellite had the most accurate clock with a difference of only 0.40 ns between the JAXA clock products and MADOCA products, and the R07 satellite had the least accurate clock with a difference of 1.55 ns. The orbit and clock products for GLONASS performed worse than those of GPS and QZSS. (2) After convergence, the positioning accuracy was 3.0–8.1 cm for static PPP and 8.1–13.7 cm for kinematic PPP when using multi-GNSS observations and precise orbit and clock products. The PFRR station performed the good performance both in static and kinematic mode with an accuracy of 2.99 cm and 8.08 cm, respectively, whereas the CPNM station produced the worst static performance with an error of 8.09 cm, and the ANMG station produced the worst kinematic performance with a counterpart of 13.69 cm. (3) The PPP-AR solution was superior to the PPP solution, given that, with respect to PPP, post-processing PPP-AR improved the positioning accuracy and convergence time by 13–32 % (3–89 %) in GPS-only mode by 2–15 % (5–60 %) in GPS/QZSS mode. Thus, we conclude that the current MADOCA products can provide SSR corrections and FCB products with positioning accuracy at the decimeter or even centimeter level, which could meet the demands of the RTPPP and PPP-AR solutions.  相似文献   

4.
The Quasi-Zenith Satellite System (QZSS) established by the Japan Aerospace Exploration Agency mainly serves the Asia-Pacific region and its surrounding areas. Currently, four in-orbit satellites provide services. Most users of GNSS in the mass market use single-frequency (SF) receivers owing to the low cost. Therefore, it is meaningful to analyze and evaluate the contribution of the QZSS to SF precise point positioning (PPP) of GPS/BDS/GLONASS/Galileo systems with the emergence of GNSS and QZSS. This study compares the performances of three SF PPP models, namely the GRoup and PHase Ionospheric Correction (GRAPHIC) model, GRAPHIC with code observation model, and an ionosphere-constrained model, and evaluated the contribution of the QZSS to the SF PPP of GPS/BDS/GLONASS/Galileo systems. Moreover, the influence of code bias on the SF PPP of the BDS system is also analyzed. A two-week dataset (DOY 013–026, 2019) from 10 stations of the MGEX network is selected for validation, and the results show that: (1) For cut-off elevation angles of 15, 20, and 25°, the convergence times for the static SF PPP of GLONASS + QZSS are reduced by 4.3, 30.8, and 12.7%, respectively, and the positioning accuracy is similar compared with that of the GLONASS system. Compared with the BDS single system, the convergence times for the static SF PPP of BDS + QZSS under 15 and 25° are reduced by 37.6 and 39.2%, the horizontal positioning accuracies are improved by 18.6 and 14.1%, and the vertical components are improved by 13.9 and 21.4%, respectively. At cut-off elevation angles of 15, 20, and 25°, the positioning accuracy and precision of GPS/BDS/GLONASS/Galileo + QZSS is similar to that of GPS/BDS/GLONASS/Galileo. And the convergence times are reduced by 7.4 and 4.3% at cut-off elevation angles of 20 and 25°, respectively. In imitating dynamic PPP, the QZSS significantly improves the positioning accuracy of BDS and GLONASS. However, QZSS has little effect on the GPS-only, Galileo-only and GPS/BDS/GLONASS/Galileo. (2) The code bias of BDS IGSO and MEO cannot be ignored in SF PPP. In static SF PPP, taking the frequency band of B1I whose multipath combination is the largest among the frequency bands as an example, the vertical component has a systematic bias of approximately 0.4–1.0 m. After correcting the code bias, the positioning error in the vertical component is lower than 0.2 m, and the positioning accuracy in the horizontal component are improved accordingly. (3) The SF PPP model with ionosphere constraints has a better convergence speed, while the positioning accuracy of the three models is nearly equal. Therefore the GRAPHIC model can be used to get good positioning accuracy in the absence of external ionosphere products, but its convergence speed is slower.  相似文献   

5.
Integer ambiguity resolution at a single station can be achieved by introducing predetermined uncalibrated phase delays (UPDs) into the float ambiguity estimates of precise point positioning (PPP). This integer resolution technique has the potential of leading to a PPP-RTK (real-time kinematic) model where PPP provides rapid convergence to a reliable centimeter-level positioning accuracy based on an RTK reference network. Nonetheless, implementing this model is technically subject to how rapidly we can fix wide-lane ambiguities, stabilize narrow-lane UPD estimates, and achieve the first ambiguity-fixed solution. To investigate these issues, we used 7 days of 1-Hz sampling GPS data at 91 stations across Europe. We find that at least 10 min of observations are required for most receiver types to reliably fix about 90% of wide-lane ambiguities corresponding to high elevations, and over 20 min to fix about 90% of those corresponding to low elevations. Moreover, several tens of minutes are usually required for a regional network before a narrow-lane UPD estimate stabilizes to an accuracy of far better than 0.1 cycles. Finally, for hourly data, ambiguity resolution can significantly improve the accuracy of epoch-wise position estimates from 13.7, 7.1 and 11.4 cm to 0.8, 0.9 and 2.5 cm for the East, North and Up components, respectively, but a few tens of minutes is required to achieve the first ambiguity-fixed solution. Therefore, from the timeliness aspect, our PPP-RTK model currently cannot satisfy the critical requirement of instantaneous precise positioning where ambiguity-fixed solutions have to be achieved within at most a few seconds. However, this model can still be potentially applied to some near-real-time remote sensing applications, such as the GPS meteorology.  相似文献   

6.
目前鲜有对北斗卫星导航系统(BeiDouNavigationSatelliteSystem,BDS)实时精密定轨与钟差确定的研究,文章提出了BDS实时轨道与实时钟差处理策略,包括了观测与动力学模型、实时轨道与实时钟差处理流程与评估方法。尤其对于实时钟差,为了提高计算效率,联合使用两个独立并行的线程估计非差绝对钟差和历元间相对钟差。利用多模全球卫星导航系统试验(MGEX)与全球连续检测评估系统(iGMAS)实测数据进行了北斗实时轨道与钟差解算,BDS实时轨道径向平均精度对于GEO卫星优于20cm,对于IGSO与MEO一般优于10cm;钟差精度对于GEO卫星为0.5~4.5ns,对于IGSO/MEO为0.2~2.0ns。基于目前的轨道与钟差结果,实时精密单点定位(PrecisePointPositioning,PPP)结果可以达到分米量级。  相似文献   

7.
PPP (Precise Point Positioning) is a GNSS (Global Navigation Satellite Systems) positioning method that requires SSR (State Space Representation) corrections in order to provide solutions with an accuracy of centimetric level. The so-called RT-PPP (Real-time PPP) is possible thanks to real-time precise SSR products, for orbits and clocks, provided by IGS (International GNSS Service) and its associate analysis centers such as CNES (Centre National d'Etudes Spatiales). CNES SSR products also enable RT-PPP with integer ambiguity resolution. In GNSS related literature, PPP with ambiguity resolution (PPP-AR) in real-time is often referred as PPP-RTK (PPP – Real Time Kinematic). PPP-WIZARD (PPP - With Integer and Zero-difference Ambiguity Resolution Demonstrator) is a software that is made available by CNES. This software is capable of performing PPP-RTK. It estimates slant ionospheric delays and other GNSS positioning parameters. Since ionospheric effects are spatially correlated by GNSS data from active networks, it is possible to model and provide ionospheric delays for any position in the network coverage area. The prior knowledge ionospheric delays can reduce positioning convergence for PPP-RTK users. Real-time ionospheric models could benefit from highly precise ionospheric delays estimated in PPP-AR. In this study, we demonstrate that ionospheric delays obtained throughout PPP-AR estimation are actu ally ionospheric observables. Ionospheric observables are biased by an order of few meters caused by the receiver hardware biases. These biases prohibit the use of PPP-WIZARD ionospheric delays to produce ionospheric models. Receiver biases correction is essential to provide ionospheric delays while using PPP-AR based ionospheric observables. In this contribution, a method was implemented to estimate and mitigate receiver hardware biases influence on slant ionospheric observables from PPP-AR. In order to assess the proposed approach, PPP-AR data from 12 GNSS stations were processed over a two-month period (March and April 2018). A comparison between IGS ionospheric products and PPP-AR based ionospheric observables corrected for receiver biases, resulted in a mean of differences of −39 cm and 51 cm standard deviation. The results are consistent with the accuracy of the IGS ionospheric products, 2–8 TECU, considering that 1 TECU is ~16 cm in L1. In another analysis, a comparison of ionospheric delays from 5 pairs of short baselines GNSS stations found an agreement of 0.001 m in mean differences with 22 cm standard deviation after receiver biases were corrected. Therefore, the proposed solution is promising and could produce high quality (1–2 TECU) slant ionospheric delays. This product can be used in a large variety of modeling approaches, since ionospheric delays after correction are unbiased. These results indicate that the proposed strategy is promising, and could benefit applications that require accuracy of 1–2 TECU (~16–32 cm in L1).  相似文献   

8.
The precise point positioning (PPP) technique is widely used in time and frequency applications. Because of the real-time service (RTS) project of the International GNSS Service, we can use the PPP technique for real-time clock comparison and monitoring. As a participant in the RTS, the Centre National d’Etudes Spatiales (CNES) implements the PPPWIZARD (Precise Point Positioning with Integer and Zero-difference Ambiguity Resolution Demonstrator) project to validate carrier phase ambiguity resolution. Unlike the Integer-PPP (IPPP) of the CNES, fixing ambiguities in the post-processing mode, the PPPWIZARD operates in the real-time mode, which is also called real-time IPPP (RT-IPPP). This paper focuses on applying the RT-IPPP for real-time clock comparison and monitoring. We review the principle of real-time clock comparison and monitoring, and introduce the methodology of the RT-IPPP technique. The observations of GPS, GLONASS and Galileo were processed for the experiments. Five processing modes were provided in the experiment to analyze the benefits of ambiguity resolution and multi-GNSS. In the clock comparison experiment, the average reduction ratios of standard deviations with respect to the G PPP mode range from 9.7% to 35.0%. In the clock monitoring experiment, G PPP mode can detect clock jumps whose magnitudes are larger than 0.9 ns. The RT-IPPP technique with GRE PPP AR (G) mode allows for the detection of any clock jumps larger than 0.6 ns. For frequency monitoring, G PPP mode allows detection of frequency changes larger than 1.1 × 10−14. When the RT-IPPP technique is applied, monitoring with GRE PPP AR (G) mode can detect frequency changes larger than 6.1 × 10−15.  相似文献   

9.
For precise position services, the real-time precise point positioning (PPP) is a promising technology. The real-time PPP performance is expected to be improved by multi-system combination. The performance of real-time multi-system PPP needs to be periodically investigated, with the increasing number of available satellites and the continuously improved quality of real-time precise products of satellite clocks and orbits. In this study, a comprehensive performance assessment is conducted for the four-system integrated real-time PPP (FSIRT-PPP) with GPS, BDS, Galileo and GLONASS in both static and kinematic modes. The datasets from 118 stations spanning approximately a month are used for analysis, and the real-time stream CLK93 is employed. The superior performance of FSIRT-PPP is validated by comparing with the results of GPS/BDS, GPS/Galileo, GPS/GLONASS, GPS-only, BDS-only, Galileo-only and GLONASS-only cases. The FSIRT-PPP using ionospheric-free (IF) combined observables can achieve a convergence time of 10.9, 4.8 and 11.8 min and a positioning accuracy of 0.4, 0.5 and 0.7 cm in the static mode in the east, north and up directions, respectively, while the derived statistic is 15.4, 7.0 and 16.4 min, and 1.6, 1.2 and 3.4 cm in the kinematic mode in the three directions, respectively. Moreover, we also compare the position solutions of real-time PPP adopting IF combined and uncombined (UC) observables, and prove the mathematical equivalence between the two PPP models in the converged stage, provided that there are no external ionospheric corrections or constraints given to the estimated ionospheric delays in the UC model. The difference between the fully converged positioning accuracy of IF-based and UC-based real-time PPP is marginal, but the UC-based real-time PPP has longer convergence time due to the influence of the significant unmodeled time-varying errors in the real-time precise products as well as the different parameterization between them. For completeness, the real-time kinematic PPP results in harsh environments and the post-processed PPP results are also presented.  相似文献   

10.
This paper discusses the concept of using inter-satellite ranging (ISR) measurements of the satellites of a Global Navigation Satellite System (GNSS) for autonomous broadcast ephemeris improvement. Firstly the inter-satellite ranging is modeled to obtain the clock and orbit error observables. The orbit error observable is analyzed and its observation equation is provided. Both least-squares estimation and Kalman Filter approach are proposed to estimate satellite clock errors, while solely the Kalman Filter is used to estimate the orbit errors. All these algorithms are validated using true broadcast ephemeris and precise ephemeris of GPS along with the simulated ranging noise. Based on the settings adopted in the test, the result shows that the orbit accuracy of the precise ephemeris using the proposed method is around 20–50 cm and the accuracy of the satellite clock can reach 20 cm while ranging noise is assumed to be 0.45 m (1σ). The User Ranging Error (URE) is improved from 1.05 m to 0.34 m, which is comparable to other sources of precise ephemeris or even better, while the proposed approach has many advantages such as compatibility and accessibility. It is also noted that the proposed method may provide useful functions in determining inter-constellation coordinate and time differences autonomously for better interoperability and interchangeability in the multi GNSS operation era.  相似文献   

11.
Intra-system biases (ISBs) between BDS-2 and BDS-3 are of critical importance when combining observations from the BDS-2 and BDS-3 systems, which is meaningful to fully take advantage of the BDS positioning capability. Meanwhile, ISBs should also be considered in the estimation of BDS uncalibrated phase delays (UPDs). In this research, we present a BDS-2/BDS-3 joint-processing scheme, as well as a method for estimating BDS UPDs. The characteristics of ISBs and the quality of BDS UPDs are analyzed based on 30-day data from 130 multi-GNSS experimental (MGEX) stations. Our results indicate that the ISBs are related to the type and version of the receiver. The ISBs can be regarded as constant across the course of a given day, and the mean standard deviation (STD) values of ISBs over one month for different types of receivers are generally within 0.2 m. Moreover, to assess the quality of UPD products, the residuals of the estimated UPDs and the utilization rates of the observation data are computed. The results show that the quality of BDS UPDs can be improved by correcting the satellite-induced pseudo-range variations, and by estimating the wide-lane (WL) UPD difference between BDS-2 and BDS-3. The average RMS values of the estimated residuals of WL UPD and narrow-lane (NL) UPD are 0.07 and 0.09 cycles, respectively; moreover, the utilization rate of the observation data of WL UPD and NL UPD can reach above 90 %. The performance of BDS precise point positioning (PPP) and PPP ambiguity resolution (PPP-AR) is analyzed in terms of positioning accuracy and convergence performance in both the static and kinematic modes. Compared with PPP ambiguity-float solutions, the positioning accuracy of PPP-AR is significantly improved, especially in the east direction. The impact of ISBs on PPP and PPP-AR is also analyzed, and the results indicate that ISBs can improve the convergence speed of float PPP, but can be disregarded in PPP-AR.  相似文献   

12.
Within the Multi-GNSS Pilot Project (MGEX) of the International GNSS Service (IGS), precise orbit and clock products for the BeiDou-3 global navigation satellite system (BDS-3) are routinely generated by a total of five analysis centers. The processing standards and specific properties of the individual products are reviewed and the BDS-3 orbit and clock product performance is assessed through direct inter-comparison, satellite laser ranging (SLR) residuals, clock stability analysis, and precise point positioning solutions. The orbit consistency evaluated by the signal-in-space range error is on the level of 4–8 cm for the medium Earth orbit satellites whereas SLR residuals have RMS values between 3 and 9 cm. The clock analysis reveals sytematic effects related to the elevation of the Sun above the orbital plane for all ACs pointing to deficiencies in solar radiation pressure modeling. Nevertheless, precise point positioning with the BDS-3 MGEX orbit and clock products results in 3D RMS values between 7 and 8 mm.  相似文献   

13.
The performance of real-time (RT) precise positioning can be improved by utilizing observations from multiple Global Navigation Satellite Systems (GNSS) instead of one particular system. Since the end of 2012, BeiDou, independently established by China, began to provide operational services for users in the Asia-Pacific regions. In this study, a regional RT precise positioning system is developed to evaluate the performance of GPS/BeiDou observations in Australia in providing high precision positioning services for users. Fixing three hourly updated satellite orbits, RT correction messages are generated and broadcasted by processing RT observation/navigation data streams from the national network of GNSS Continuously Operating Reference Stations in Australia (AUSCORS) at the server side. At the user side, RT PPP is realized by processing RT data streams and the RT correction messages received. RT clock offsets, for which the accuracy reached 0.07 and 0.28?ns for GPS and BeiDou, respectively, can be determined. Based on these corrections, an accuracy of 12.2, 30.0 and 45.6?cm in the North, East and Up directions was achieved for the BeiDou-only solution after 30 min while the GPS-only solution reached 5.1, 15.3 and 15.5?cm for the same components at the same time. A further improvement of 43.7, 36.9 and 45.0 percent in the three directions, respectively, was achieved for the combined GPS/BeiDou solution. After the initialization process, the North, East and Up positioning accuracies were 5.2, 8.1 and 17.8?cm, respectively, for the BeiDou-only solution, while 1.5, 3.0, and 4.7?cm for the GPS-only solution. However, we only noticed a 20.9% improvement in the East direction was obtained for the GPS/BeiDou solution, while no improvements in the other directions were detected. It is expected that such improvements may become bigger with the increasing accuracy of the BeiDou-only solution.  相似文献   

14.
The Global Navigation Satellite System (GNSS) receivers equipped on the Haiyang-2D (HY-2D) satellite is capable of tracking the signals of both the third generation of BeiDou satellite navigation System (BDS-3) and the Global Positioning System (GPS), which make it feasible to assess the performance of real-time orbit determination (RTOD) for the HY-2D using onboard GNSS observations. In this study, the achievable accuracy and convergence time of RTOD for the HY-2D using onboard BDS-3 and GPS observations are analyzed. Benefiting from the binary-offset-carrier (BOC) modulation, the BDS-3 C1X signal includes less noise than the GPS C1C signal, which has the same signal frequency and chipping rate. The root mean squares (RMS) of the noises of C1X and C1C code measurements are 0.579 m and 1.636 m, respectively. Thanks to a ten-times higher chipping rate, the code measurements of BDS-3 C5P, GPS C1W and C2W are less noisy. The RMS of code noises of BDS-3 C5P, GPS C1W, and C2W are 0.044 m, 0.386 m, and 0.272 m, respectively. For the HY-2D orbit, the three-dimensional (3D) and radial accuracies can reach 31.8 cm and 7.5 cm with only BDS-3 observations, around 50 % better than the corresponding accuracies with GPS. Better performance of the BDS-3 in RTOD for the HY-2D is attributed to the high quality of its broadcast ephemeris. When random parameters are used to absorb ephemeris errors, substantial improvement is seen in the accuracy of HY-2D orbit with either BDS-3 or GPS. The 3D RMS of HY-2D orbit errors with BDS-3 and GPS are enhanced to 23.1 cm and 33.6 cm, and the RMS of the radial components are improved to 6.1 cm and 13.3 cm, respectively. The convergence time is 41.6 and 75.5 min for the RTOD with BDS-3 and GPS, while it is reduced to 39.2 and 27.4 min after the broadcast ephemeris errors are absorbed by random parameters. Overall, the achievable accuracy of RTOD with BDS-3 reaches decimeter level, which is even better than that with GPS, making real-time navigation using onboard BDS-3 observations a feasible choice for future remote sensing missions.  相似文献   

15.
The Global Positioning System (GPS) variometric approach has emerged as an attractive alternative to traditional well-developed positioning techniques including relative positioning and precise point positioning. Previous studies have demonstrated the capability of the variometric approach to retrieve coseismic displacements at centimeter-level precision, in a real-time manner using only readily available broadcast ephemeris. This study presents the first results comparing the performance of the variometric approach by using a variety of precise satellite orbit and clock products. Totally six kinds of products are included in our evaluation, namely the broadcast, IGS (International GNSS Service) ultra-rapid (predicted), ultra-rapid (observed), rapid, final (30-s clock) and CODE (Center for Orbit Determination in Europe) final (5-s clock) products. Static and dynamic experiments are conducted using 1-Hz GPS data covering a relatively large area in China during the 2008 Wenchuan MW 7.9 earthquake. After removing the linear trend, the displacements using broadcast, ultra-rapid (predicted), ultra-rapid (observed) and rapid products reach nearly equivalent precisions at centimeter level. By using final and CODE final products, the precision of displacements can be significantly improved from 1.9–2.0 cm to 0.4–0.7 cm horizontally, and from 6.0–6.2 cm to 1.0–1.7 cm vertically for the dynamic experiments. The displacements using the CODE final products achieve the best precision, improved by more than 40% compared to those using the IGS final products. With the availability of IGS high-rate real-time precise products, this approach is promising to capture coseismic displacements more precisely in real time, which is crucial for earthquake and tsunami early warning.  相似文献   

16.
Motivated by the IGS real-time Pilot Project, GFZ has been developing its own real-time precise positioning service for various applications. An operational system at GFZ is now broadcasting real-time orbits, clocks, global ionospheric model, uncalibrated phase delays and regional atmospheric corrections for standard PPP, PPP with ambiguity fixing, single-frequency PPP and regional augmented PPP. To avoid developing various algorithms for different applications, we proposed a uniform algorithm and implemented it into our real-time software. In the new processing scheme, we employed un-differenced raw observations with atmospheric delays as parameters, which are properly constrained by real-time derived global ionospheric model or regional atmospheric corrections and by the empirical characteristics of the atmospheric delay variation in time and space. The positioning performance in terms of convergence time and ambiguity fixing depends mainly on the quality of the received atmospheric information and the spatial and temporal constraints. The un-differenced raw observation model can not only integrate PPP and NRTK into a seamless positioning service, but also syncretize these two techniques into a unique model and algorithm. Furthermore, it is suitable for both dual-frequency and sing-frequency receivers. Based on the real-time data streams from IGS, EUREF and SAPOS reference networks, we can provide services of global precise point positioning (PPP) with 5–10 cm accuracy, PPP with ambiguity-fixing of 2–5 cm accuracy, PPP using single-frequency receiver with accuracy of better than 50 cm and PPP with regional augmentation for instantaneous ambiguity resolution of 1–3 cm accuracy. We adapted the system for current COMPASS to provide PPP service. COMPASS observations from a regional network of nine stations are used for precise orbit determination and clock estimation in simulated real-time mode, the orbit and clock products are applied for real-time precise point positioning. The simulated real-time PPP service confirms that real-time positioning services of accuracy at dm-level and even cm-level is achievable with COMPASS only.  相似文献   

17.
Autonomous satellite navigation is based on the ability of a Global Navigation Satellite System (GNSS), such as Beidou, to estimate orbits and clock parameters onboard satellites using Inter-Satellite Link (ISL) measurements instead of tracking data from a ground monitoring network. This paper focuses on the time synchronization of new-generation Beidou Navigation Satellite System (BDS) satellites equipped with an ISL payload. Two modes of Ka-band ISL measurements, Time Division Multiple Access (TDMA) mode and the continuous link mode, were used onboard these BDS satellites. Using a mathematical formulation for each measurement mode along with a derivation of the satellite clock offsets, geometric ranges from the dual one-way measurements were introduced. Then, pseudoranges and clock offsets were evaluated for the new-generation BDS satellites. The evaluation shows that the ranging accuracies of TDMA ISL and the continuous link are approximately 4?cm and 1?cm (root mean square, RMS), respectively. Both lead to ISL clock offset residuals of less than 0.3?ns (RMS). For further validation, time synchronization between these satellites to a ground control station keeping the systematic time in BDT was conducted using L-band Two-way Satellite Time Frequency Transfer (TWSTFT). System errors in the ISL measurements were calibrated by comparing the derived clock offsets with the TWSTFT. The standard deviations of the estimated ISL system errors are less than 0.3?ns, and the calibrated ISL clock parameters are consistent with that of the L-band TWSTFT. For the regional BDS network, the addition of ISL measurements for medium orbit (MEO) BDS satellites increased the clock tracking coverage by more than 40% for each orbital revolution. As a result, the clock predicting error for the satellite M1S was improved from 3.59 to 0.86?ns (RMS), and the predicting error of the satellite M2S was improved from 1.94 to 0.57?ns (RMS), which is a significant improvement by a factor of 3–4.  相似文献   

18.
By using the observation data and products of precise obit and clock offset from Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS) and GNSS Research Centre, Curtin University in this paper, the positioning performance of BDS/QZSS satellite navigation system has been analyzed and evaluated in aspects of the quantity of visible satellites, DOP value, multipath effect, signal-to-noise ratio, static PPP and kinematic PPP. The analysis results show that compared to BDS single system when the cutoff angle are 30°and 40°, the DOP value of BDS/QZSS combined system has decreased above 20%, and the quantity of visible satellites increased about 16–30% respectively, because of the improved spatial geometric configuration. The magnitude of satellite multipath effect of BDS system shows the trend of MEO?>?IGSO?>?GEO, which is consistent with that of QZSS satellite system, as the constellation structure of the two systems is similar. The variation tendencies of signal-to-noise ratio with respect to elevation angle of the two systems are almost the same at all frequencies, showing that at the same elevation angle the signal-to-noise ratio of MEO satellites is higher than that of IGSO satellites, as the higher obit is the lower transmitting power is obtained. For having a specially designed obit, the variation of signal-to-noise ratio of BDS system is more stable. However, the magnitude of signal-to-noise ratio of QZSS system appears the trend of frequency 3?>?frequency 2?>?frequency 1. The static PPP performance of the BDS/QZSS combination system has been improved more significantly than the BDS single system in E, N and U directions. When the cutoff angle are at 7°, 15° and 30°, the PPP accuracy is increased about 25–34% in U direction, 10–13% and 23–34% in E and N directions respectively. When the elevation angle is large (40°), compared to BDS single system at lower elevation angles (7° and 15°) the PPP accuracy of the BDS/QZSS combination system is improved above 30% in U direction. In kinematic PPP performance, compared to BDS single system, the accuracy, availability and reliability of the BDS/QZSS combination system has been improved too, especially at large elevation angles (30° and 40°), the kinematic PPP accuracy in E and U directions has been improved about 10–50%, and above 50% in U direction. It can be concluded that the combination with QZSS system can improve the positioning accuracy, reliability and stability of BDS system. In the future, with the improvement of the satellite construction of Japan’s QZSS system and the global networking of China’s BDS satellites, the QZSS satellites will contribute greatly to improve the positioning accuracy, reliability, availability and stability of GNSS systems in areas such as cities, mountains, densely-packed buildings and severely covered areas in Asian-Pacific region.  相似文献   

19.
Continuous and timely real-time satellite orbit and clock products are mandatory for real-time precise point positioning (RT-PPP). Real-time high-precision satellite orbit and clock products should be predicted within a short time in case of communication delay or connection breakdown in practical applications. For prediction, historical data describing the characteristics of the real-time orbit and clock can be used as the basis for performing the prediction. When historical data are scarce, it is difficult for many existing models to perform precise predictions. In this paper, a linear regression model is used to predict clock products. Seven-day GeoForschungsZentrum (GFZ) final clock products sampled at 30 s are used to analyze the characteristics of GNSS clocks. It is shown that the linear regression model can be used as the prediction model for the satellite clock products. In addition, the accuracy of the clock prediction for different satellites are analyzed using historical data with different periods (such as 2 and 10 epochs). Experimental results show that the accuracy of the clock with the linear regression prediction model using historical data with 10 epochs is 1.0 ns within 900 s. This is higher accuracy than that achieved using historical data of 2 epochs. Finally, the performance analysis for real-time kinematic precise point positioning (PPP) is provided using GFZ final clock prediction results and state space representation (SSR) clock prediction results when communication delay or connection breakdown occur. Experimental results show that the positioning accuracy without prediction is better than that with prediction in general, whether using the final clock product or the SSR clock product. For the final clock product, the positioning accuracy in the north (N), east (E), and up (U) directions is better than 10.0 cm with all visible GNSS satellites with prediction. In comparison, the 3D positioning accuracy of N, E, and U directions with visible GNSS satellites whose prediction accuracy is better than 0.1 ns using historical data of 10 epochs is improved from 15.0 cm to 7.0 cm. For the SSR clock product, the positioning accuracy of N, E, and U directions is better than 12.0 cm with visible GNSS satellites with prediction. In comparison, the 3D positioning accuracy of N, E, and U directions with visible GNSS satellites whose prediction accuracy is better than 0.1 ns using historical data of 10 epochs is improved from 12.0 cm to 9.0 cm.  相似文献   

20.
Precise satellite orbit and clocks are essential for providing high accuracy real-time PPP (Precise Point Positioning) service. However, by treating the predicted orbits as fixed, the orbital errors may be partially assimilated by the estimated satellite clock and hence impact the positioning solutions. This paper presents the impact analysis of errors in radial and tangential orbital components on the estimation of satellite clocks and PPP through theoretical study and experimental evaluation. The relationship between the compensation of the orbital errors by the satellite clocks and the satellite-station geometry is discussed in details. Based on the satellite clocks estimated with regional station networks of different sizes (∼100, ∼300, ∼500 and ∼700 km in radius), results indicated that the orbital errors compensated by the satellite clock estimates reduce as the size of the network increases. An interesting regional PPP mode based on the broadcast ephemeris and the corresponding estimated satellite clocks is proposed and evaluated through the numerical study. The impact of orbital errors in the broadcast ephemeris has shown to be negligible for PPP users in a regional network of a radius of ∼300 km, with positioning RMS of about 1.4, 1.4 and 3.7 cm for east, north and up component in the post-mission kinematic mode, comparable with 1.3, 1.3 and 3.6 cm using the precise orbits and the corresponding estimated clocks. Compared with the DGPS and RTK positioning, only the estimated satellite clocks are needed to be disseminated to PPP users for this approach. It can significantly alleviate the communication burdens and therefore can be beneficial to the real time applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号