首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 554 毫秒
1.
The main aim of this study is to evaluate the gully erosion susceptibility coupling the artificial intelligence and machine learning ensemble approaches. In the present study, the multilayer perceptron neural network (MLP) was used as the base classifier and the hybrid ensemble machine learning methods i.e. Bagging and Dagging were used as the functional classifiers. The Hinglo river basin, an important tributary of the Ajay River was selected as the study area, consists with the parts of Chhotonagpur plateau and Rarh lateritic region. The study area is facing the gully erosion problems which are interrupted the growth of the agriculture. The gully erosion susceptibility maps (GESMs), prepared by MLP, MLP-Bagging and MLP-Dagging were classified into four classes such as low, moderate, high and very high susceptibility classes with the help of natural break method (NBM) in GIS environment. The very high susceptibility class covered 19.41% (MLP), 13.52% (MLP-Bagging) and 15.30% (MLP-Dagging) areas of the basin. For the evaluation and comparison of the models, receiver operating characteristics (ROC), accuracy, mean absolute error (MAE) and root mean square error (RMSE) were applied. Overall, all the gully erosion susceptibility models were performed as excellent. Integration of hybrid ensemble models with MLP has increase the accuracy of the MLP models. Among these models MLP-Dagging has achieved the highest accuracy in compare to the other models. The importance of the selected factors in the present study was assessed by the Relief-F method. The results show that the soil type factor has the highest predictive performance. Sensitivity analysis also showed soil type as most important factor. The gully erosion susceptibility maps (GESMs) are considered as the efficient tool which could be used to take the necessary steps for mitigating and controlling the soil erosion problem and sustainable environmental management and development.  相似文献   

2.
Flooding is the overflow of water from stream, river, lake and sea that occurs all over the world and has disastrous effects on human society and environment. Frequent severe flood event in eastern India cause of death and damages every year so, the development of flood susceptibility method is needed for identifying the flood vulnerability areas to reduce the damages. Techniques of Remote Sensing (RS) and Geographical Information System (GIS) can help to flood susceptibility modeling by the accrued and analyzing huge amount of data in short time. The main objectives of this study are to determine the effectiveness of Evidence Belief Function (EBF), binomial Logistic Regression (LR) and ensemble of EBF and LR (EBF-LR) model with RS and GIS techniques for flood susceptibility mapping and spatial prediction of flood-susceptible areas in the Koiya river basin of West Bengal, India. Eight flood conditioning factors; Land use and land cover (LULC), soil, rainfall, normalized differences vegetation index (NDVI), distance to river, elevation, topographic wetness index (TWI) and stream power index (SPI) have been used, and total 264 historical flooding points were mapped, and randomly divided in to training (70%) and validating (30%) dataset. Flood susceptibility map has been generated by applying EBF, LR and ensemble EBF-LR method with the help of training and eight causative factors dataset. The maps have been divided in to six classes; extremely low, very low, low, moderate, high and very high. The receiver operating characteristic (ROC) curve has been used to accuracy assessment of the susceptibility map, and the area under curve (AUC) disclosures 87.9%, 85.2% and 84.1% prediction rate for the EBF-LR, EBF and LR model, respectively. This study is helpful to flood management program, dissection makers and planning in local administrative level.  相似文献   

3.
The current paper introduces a new multilayer perceptron (MLP) and support vector machine (SVM) based approach to improve daily rainfall estimation from the Meteosat Second Generation (MSG) data. In this study, the precipitation is first detected and classified into convective and stratiform rain by two MLP models, and then four multi-class SVM algorithms were used for daily rainfall estimation. Relevant spectral and textural input features of the developed algorithms were derived from the spectral MSG SEVIRI radiometer channels. The models were trained using radar rainfall data set colected over north Algeria. Validation of the proposed daily rainfall estimation technique was performed by rain gauge network data set recorded over north Algeria. Thus, several statistical scores were calculated, such as correlation coefficient (r), root mean square error (RMSE), mean error (Bias), and mean absolute error (MAE). The findings given by: (r = 0.97, bias = 0.31 mm, RMSE = 2.20 mm and MAE = 1.07 mm), showed a quite satisfactory relationship between the estimation and the respective observed daily precipitation. Moreover, the comparison of the results with those of two advanced techniques based on random forests (RF) and weighted ‘k’ nearest neighbor (WkNN) showed higher accuracy obtained by the proposed model.  相似文献   

4.
The large-scale atmospheric-oceanic phenomena are among the main effective factors in the droughts in the Middle East, especially in Iran. Since these effects are usually delayed, their relevant signals can be useful for predicting droughts. As a result, the provision of a precise prediction of these signals can be efficient in increasing the drought prediction prospect. The current study predicts 8 cases of the most effective oceanic signals on the droughts which have been investigated in Iran. To do so, the problem-solving method with the time series prediction approach is based on the two model types intelligence-based (including multilayer perceptron [MLP] and support vector machine [SVM]) and stochastic (including Autoregressive Integrated Moving Average [ARIMA]) has been used. The model's input for each index included the time lags of the same index itself, which was determined by the autocorrelation function. Based on the evaluation criteria, the results were indicative of the weak predictability of the North Atlantic Oscillation (NAO) and Arctic Oscillation (AO), while the Extreme Eastern Tropical Pacific sea surface temperature (Niño [1 + 2]), East Central Tropical Pacific sea surface temperature (Niño [3 + 4]), and Oceanic Niño Index (ONI) were predicted with very good accuracy, and there is a high overlap between their predictions and observations (95.9 % < R2 < 99.3 %). In the extreme events also, the rate of normalized forecasting error for Niño (1 + 2), Niño (3 + 4), and ONI were in the medium (20–30 %), good (10–20 %), and excellent (0–10 %) ranges, respectively. The comparison between the models also indicates a partial superiority of the ARIMA stochastic model over the SVM and MLP models. The overall results of the study are indicative of the applicability of the predictions of the three mentioned indices as the inputs to increase precipitation and drought forecasting prospects in Iran (as well as all regions affected by them); which have the research value for further studies in terms of drought forecasting.  相似文献   

5.
The aim of this study was to identify landslide-related factors using only remotely sensed data and to present landslide susceptibility maps using a geographic information system, data-mining models, an artificial neural network (ANN), and an adaptive neuro-fuzzy interface system (ANFIS). Landslide-related factors were identified in Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite imagery. The slope, aspect, and curvature of topographic features were calculated from a digital elevation model that was made using the ASTER imagery. Lineaments, land-cover, and normalized difference vegetative index layers were also extracted from the imagery. Landslide-susceptible areas were analyzed and mapped based on occurrence factors using the ANN and ANFIS. The generalized bell-shaped built-in membership function of the ANFIS was applied to landslide susceptibility mapping. Analytical results were validated using landslide test location data. In the validation results, the ANN model showed 80.42% prediction accuracy and the ANFIS model showed 86.55% prediction accuracy. These results suggest that the ANFIS model has a better performance than does the ANN in predicting landslide susceptibility.  相似文献   

6.
In this paper, a new method of temporal extrapolation of the ionosphere total electron content (TEC) is proposed. Using 3-layer wavelet neural networks (WNNs) and particle swarm optimization (PSO) training algorithm, TEC time series are modeled. The TEC temporal variations for next times are extrapolated with the help of training model. To evaluate the proposed model, observations of Tehran GNSS station (35.69°N, 51.33°E) from 2007 to 2018 are used. The efficiency of the proposed model has been evaluated in both low and high solar activity periods. All observations of the 2015 and 2018 have been removed from the training step to test the proposed model. On the other hand, observations of these 2 years are not used in network training. According to the F10.7, the 2015 has high solar activity and the 2018 has quiet conditions. The results of the proposed model are compared with the global ionosphere maps (GIMs) as a traditional ionosphere model, international reference ionosphere 2016 (IRI2016), Kriging and artificial neural network (ANN) models. The root mean square error (RMSE), bias, dVTEC = |VTECGPS ? VTECModel| and correlation coefficient are used to assess the accuracy of the proposed method. Also, for more accurate evaluation, a single-frequency precise point positioning (PPP) approach is used. According to the results of 2015, the maximum values of the RMSE for the WNN, ANN, Kriging, GIM and IRI2016 models are 5.49, 6.02, 6.34, 6.19 and 13.60 TECU, respectively. Also, the maximum values of the RMSE at 2018 for the WNN, ANN, Kriging, GIM and IRI2016 models are 2.47, 2.49, 2.50, 4.36 and 6.01 TECU, respectively. Comparing the results of the bias and correlation coefficient shows the higher accuracy of the proposed model in quiet and severe solar activity periods. The PPP analysis with the WNN model also shows an improvement of 1 to 12 mm in coordinate components. The results of the analyzes of this paper show that the WNN is a reliable, accurate and fast model for predicting the behavior of the ionosphere in different solar conditions.  相似文献   

7.
Sustainable monitoring and determining the biophysical characteristics of crops is of global importance due to the increase in demand for food. In this context, remote sensing data provide valuable information on crops. This study investigates the relationship between the variables determined from both Synthetic Aperture Radar (SAR) and optical images and crop height. For this purpose, backscatter (σVH, σVV, σVH / σVV) and coherence (?VH, ?VV) of multi-temporal dual-polarized Sentinel-1 and vegetation indices of multi-temporal Sentinel-2 data are analyzed. Two indices, namely, Normalized Difference Vegetation Index (NDVI) and NDVI with the red-edge band (NDVIred), are interpreted to identify the contribution of the red-edge band over the near-infrared band. The Zile District of Tokat province in Turkey where dominantly sunflower cultivation is carried out, was selected as the study area. In the analysis of the data, Simple Linear Regression (SLR), Multiple Linear Regression (MLR), Artificial Neural Network (ANN), EXtreme Gradient Boosting (XGBoost), and Convolutional Neural Network (CNN) were used. In the results of the study, ANN showed the lowest RMSE = 3.083 cm (RMSE%= 11.284) in the stem elongation period. The CNN followed the lowest RMSE for the Inflorescence development and flowering stages 19.223 cm (RMSE%=15.458) and 8.731 cm (RMSE%=5.821), respectively. In the ripening period, XGBoost achieved the lowest RMSE = 8.731 cm (RMSE%=6.091). All the best models in four methods were created using common variables of σVH, σVV, ?VH, ?VV and NDVIred, except ANN which exclude coherence variables. The results concluded that NDVIred contributed more than NDVI which is widely interpreted in previous studies.  相似文献   

8.
This study presents the first prediction results of a neural network model for the vertical total electron content of the topside ionosphere based on Swarm-A measurements. The model was trained on 5 years of Swarm-A data over the Euro-African sector spanning the period 1 January 2014 to 31 December 2018. The Swarm-A data was combined with solar and geomagnetic indices to train the NN model. The Swarm-A data of 1 January to 30 September 2019 was used to test the performance of the neural network. The data was divided into two main categories: most quiet and most disturbed days of each month. Each category was subdivided into two sub-categories according to the Swarm-A trajectory i.e. whether it was ascending or descending in order to accommodate the change in local time when the satellite traverses the poles. Four pairs of neural network models were implemented, the first of each pair having one hidden layer, and the second of each pair having two hidden layers, for the following cases: 1) quiet day-ascending, 2) quiet day-descending, 3) disturbed day-ascending, and 4) disturbed day-descending. The topside vertical total electron content predicted by the neural network models compared well with the measurements by Swarm-A. The model that performed best was the one hidden layer model in the case of quiet days for descending trajectories, with RMSE = 1.20 TECU, R = 0.76. The worst performance occurred during the disturbed descending trajectories where the one hidden layer model had the worst RMSE = 2.12 TECU, (R = 0.54), and the two hidden layer model had the worst correlation coefficient R = 0.47 (RMSE = 1.57).In all cases, the neural network models performed better than the IRI2016 model in predicting the topside total electron content. The NN models presented here is the first such attempt at comparing NN models for the topside VTEC based on Swarm-A measurements.  相似文献   

9.
In recent years, land surface temperature (LST) has become critical in environmental studies and earth science. Remote sensing technology enables spatiotemporal monitoring of this parameter on large scales. This parameter can be estimated by satellite images with at least one thermal band. Sentinel-3 SLSTR data provide LST products with a spatial resolution of 1 km. In this research, direct and indirect validation procedures were employed to evaluate the Sentinel-3 SLSTR LST products over the study area in different seasons from 2018 to 2019. The validation method was based on the absolute (direct) evaluation of this product with field data and comparison (indirect) evaluation with the MODIS LST product and the estimated LST using the non-linear split-window (NSW) algorithm. Also, two emissivity estimation methods, (1) NDVI thresholding method (NDVI-THM) and (2) classification-based emissivity method (CBEM), were used to estimate the LST using the NSW method according to the two thermal bands of Sentinel-3 images. Then, the accuracy of these methods in estimating LST was evaluated using field data and temporal changes of vegetation, which the NDVI-THM method generated better results. For indirect evaluation between the Sentinel-3 LST product, MODIS LST product, and LST estimated using NSW, four filters based on spatial and temporal separates between pairs of pixels and pixel quality were used to ensure the accuracy and consistency of the compared pairs of a pixel. In general, the accuracy results of the LST products of MODIS and Sentinel-3, and LST estimated using NSW showed a similar trend for LST changes during the seasons. With respect to the two absolute and comparative validations for the Sentinel-3 LST products, summer with the highest values of bias (?1.24 K), standard deviation (StDv = 2.66 K), and RMSE (2.43 K), and winter with the lowest ones (bias of 0.14 K, StDv of 1.13 K, and RMSE of 1.12 K) provided the worst and best results for the seasons in the period of 2018–2019, respectively. According to both absolute and comparative evaluation results, the Sentinel-3 SLSTR LST products provided reliable results for all seasons on a large temporal and spatial scale over our studied area.  相似文献   

10.
There are remarkable ionospheric discrepancies between space-borne (COSMIC) measurements and ground-based (ionosonde) observations, the discrepancies could decrease the accuracies of the ionospheric model developed by multi-source data seriously. To reduce the discrepancies between two observational systems, the peak frequency (foF2) and peak height (hmF2) derived from the COSMIC and ionosonde data are used to develop the ionospheric models by an artificial neural network (ANN) method, respectively. The averaged root-mean-square errors (RMSEs) of COSPF (COSMIC peak frequency model), COSPH (COSMIC peak height model), IONOPF (Ionosonde peak frequency model) and IONOPH (Ionosonde peak height model) are 0.58 MHz, 19.59 km, 0.92 MHz and 23.40 km, respectively. The results indicate that the discrepancies between these models are dependent on universal time, geographic latitude and seasons. The peak frequencies measured by COSMIC are generally larger than ionosonde’s observations in the nighttime or middle-latitudes with the amplitude of lower than 25%, while the averaged peak height derived from COSMIC is smaller than ionosonde’s data in the polar regions. The differences between ANN-based maps and references show that the discrepancies between two ionospheric detecting techniques are proportional to the intensity of solar radiation. Besides, a new method based on the ANN technique is proposed to reduce the discrepancies for improving ionospheric models developed by multiple measurements, the results indicate that the RMSEs of ANN models optimized by the method are 14–25% lower than the models without the application of the method. Furthermore, the ionospheric model built by the multiple measurements with the application of the method is more powerful in capturing the ionospheric dynamic physics features, such as equatorial ionization, Weddell Sea, mid-latitude summer nighttime and winter anomalies. In conclusion, the new method is significant in improving the accuracy and physical characteristics of an ionospheric model based on multi-source observations.  相似文献   

11.
Existing amplitude scintillation prediction models often perform less satisfactorily when deployed outside the regions where they were formulated. This necessitates the need to evaluate the performance of scintillation models developed in one region using data data from other regions while documenting their relative errors. Due to its variation with elevation angle, frequency, other link parameters and meteorological factors, we employed three years (January 2016 to December 2018) of concurrently measured satellite radio beacons and tropospheric weather parameters to develop a location-based amplitude scintillation prediction model over the Earth-space path of Akure (7.17oN, 5.18oE), South-western Nigeria. The satellite beacon measurement used Tektronix Y400 NetTek Analyzer at 1 s integration time while meteorological parameters, namely; temperature, pressure and relative humidity were measured using Davis Vantage Vue weather station at 1 min integration time. Comparative study of the model’s performance with nine (9) existing scintillation prediction models indicates that the best and worst performing models, in terms of root mean square error (RMSE), are the Statistical Temperature and Refractivity (STN) and direct physical and statistical prediction (DPSP) models with values 11.48 and 51.03 respectively. Also, worst month analysis indicates that April, with respective enhancement and fade values of 0.88 and 0.90 dB for 0.01% exceedance, is the overall worst calendar month for amplitude scintillation.  相似文献   

12.
There are hundreds of satellites operating at the geosynchronous (GEO) orbit where relativistic electrons can cause severe damage. Thus, predicting relativistic electron fluxes is significant for spacecraft safety. In this study, using GOES satellite data during 2011–2020, we propose two neural network models with two hidden layers to predict geosynchronous relativistic electron fluxes at two energy channels (>0.8 MeV and > 2 MeV). The number of input neurons of the two channels (>0.8 MeV and > 2 MeV) are determined to be 36 and 44, respectively. The > 0.8 MeV model has 22 and 9 neurons in the hidden layers, while the > 2 MeV model has 25 and 15 neurons in the hidden layers. The input parameters include the north–south component of the interplanetary magnetic field, solar wind speed, solar wind dynamic pressure and solar wind proton density. Through the analysis of different time delays, we determine that the optimal time delays of two energy channels (>0.8 MeV and > 2 MeV) are 8 days and 10 days, respectively. The training set and validation set (Jan 2011-Dec 2018) are divided by the 10-fold cross-validation method, and the remaining data (Jan 2019-Feb 2020) is used to analyze the model performance as a test set. The prediction results of both energy channels show good agreement with satellite observations indicated by low RMSE (~0.3 cm-2sr-1s?1), high PE (~0.8) and CC (~0.9). These results suggest that only using solar wind parameters is capable of obtaining reasonable predictions of geosynchronous relativistic electron fluxes.  相似文献   

13.
The results from direct ground-based solar UV irradiance measurements and the total ozone content (TOC) over Stara Zagora (42° 25′N, 25° 37′E), Bulgaria are presented. During the period 1999–2003 the TOC data show seasonal variations, typical for the middle latitudes – maximum in the spring and minimum in the autumn. The comparison between TOC ground-based data and Global Ozone Monitoring Experiment (GOME) satellite-borne ones shows a seasonal dependence of the differences between them.A strong negative relationship between the total ozone and the 305 nm wavelength irradiance was found. The dependence between the two variables is significant (r = −0.62 ± 0.18) at 98% confidence level.The direct sun UV doses for some specific biological effects (erythema and eyes) are obtained. The estimation of the radiation amplification factor RAF shows that the ozone reduction by 1% increases the erythemal dose by 2.3%. The eye-damaging doses are more influenced by the TOC changes and in this case RAF = −2.7%.The amount of these biological doses depended on the solar altitude over the horizon. This dependence was not so strong when the total ozone content in the atmosphere was lower.  相似文献   

14.
Total electron content (TEC) measured simultaneously using Global Positioning System (GPS) ionospheric monitors installed at some locations in Nigeria during the year 2011 (Rz = 55.7) was used to study the diurnal, seasonal, and annual TEC variations. The TEC exhibits daytime maximum, seasonal variation and semiannual variations. Measured TEC were compared with those predicted by the improved versions of the International Reference Ionosphere (IRI) and NeQuick models. The models followed the diurnal and seasonal variation patterns of the observed values of TEC. However, IRI model produced better estimates of TEC than NeQuick at all locations.  相似文献   

15.
Darjeeling Himalaya is one of the several mountainous areas of India which is often suffered from landslide hazards. In this paper, a multi criteria evaluation is applied using 16 morphometric indicators, geology and lineaments to identify the areas vulnerable in respect to drainage and relief conditions. As both drainage and relief parameters exert strong influences on landslide intensity, both the diversity maps are integrated for final landslide susceptibility mapping. The obtained results show that 20.17?sq.?km (7.61%) area within the basin is highly susceptible for landslides, where average drainage density is 3.78?km/sq.?km, relative relief is greater than 408?m and slope is greater than 12°. The validation result shows that very high landslide susceptible zone is associated with very high frequency of landslide occurrence. Beside this, ROC curve also suggests good predicted rate (86.60%) for the model. So, the proposed method can be applied for predicting landslide susceptible zone.  相似文献   

16.
17.
The spatial distribution of the vector of the Stokes parameters characterizing the radiance intensity and the radiance polarization describes the radiation field in the atmosphere. A simplified treatment of light as the scalar has only restricted application. A few studies compared previously results of the vector and scalar radiative transfer models and showed that scalar models are in error by up to 10% for many cases. Though several observational conditions were exploited, an effect of polarization on modeling of UV radiance has not been investigated yet for twilight. The paper presents a preliminary study of modeled UV radiance during twilight taking into account polarization. The intensity and the degree of linear polarization of the scattered UV radiance for two cases of the ground-based observations are discussed. In the first case, radiation incoming from the zenith for the solar zenith angles (SZA) from 90° to 98° is under investigation. Radiation in the solar principal plane for the beginning of twilight (SZA = 90.1°) was calculated in the second case. The study showed that the UV radiation field in the twilight atmosphere can be handled correctly only using the vector theory. The errors of scalar radiative transfer strongly depend on wavelength, line of an observation and solar position. The revealed distortion of the zenith radiance caused by using of the scalar approximation reaches maximum of 15% at 340 nm for the solar zenith angle (SZA) equal to 98°. The shorter wavelengths have the smaller errors, about 5% at 305 nm for SZA = 98°, due to the larger part of the single scattered radiance. The error of the scalar modeling may be as large as −17% for radiance incoming from the horizon for SZA = 90.1°. Scalar radiative transfer models underestimate the integral intensity in the principal plane up to 3–4% ± 0.5% at SZA = 90.1° for wavelengths from 320 to 340 nm. This should be taken into account in problems of radiative budget estimation and remote sensing of the atmosphere exploiting the twilight period.  相似文献   

18.
An important characteristic of rainfall levels at a particular place is the statistical distribution of rainfall rate. In this paper, 5-min integration time rainfall data for the Northcentral region of Nigeria was obtained from the Tropospheric Data Acquisition Network (TRODAN), Anyigba, Nigeria. Also, 1-min integration time rainfall was measured at Minna, Nigeria. In order to obtain the optimal rain rate model suitable for this region, two globally recognised rain rate models were critically evaluated and compared with the 1-min measurements. These are the ITU-R P.837-7 and Lavergnat-Gole (L-G) models. The results obtained showed that the ITU-R P.837-7 and L-G models respectively underestimated the measured rain rate by 7.3 mm/h and 9 mm/h at time percentage exceedance of 0.1%, while they underestimated the measured rain rate by 23.4 mm/h and 13 mm/h respectively at 0.01%. At 0.001%, the measured rain rate was overestimated by the ITU-R P.837-7 and L-G models by 27.4 mm/h and 3 mm/h respectively. Further performance evaluation of the predefined models was carried out using different error metrics such as sum of absolute error (SAE), mean absolute error (MAE), root mean square error (RMSE), standard deviation (STDEV) and Spearman’s rank correlation. The results obtained adjudged the Lavergnat-Gole model as the best rain rate prediction model for this region.  相似文献   

19.
The geomagnetic field, modified by the solar wind, determines the shape, area and location of polar caps and auroral zones, among other magnetosphere and upper atmosphere characteristics. Since the field varies greatly with time it is of interest to analyze polar caps and auroral zones variations linked to magnetic field variations of intensity and pattern. Polar caps and auroral zones locations and areas for various single harmonic axial field configurations are obtained analytically assuming a simple magnetopause model. As the axial degree n increases, the polar caps and auroral zones total number, given by n + 1 and 2n respectively, also increase. However, their total areas decrease from a larger value in the case of an axial dipole to a minimum for an axial octupole (n = 3), and then increase for increasing degrees. The increasing rate is much higher in the auroral zones case to the point that it exceeds the dipolar value at n = 5 while in the polar caps case this occurs at n = 8. The absolute latitudes of the auroral zones and polar caps that reside around the geographical poles increase with axial degree. Our results represent an end-member case of the evolution of auroral zones and polar caps during polarity reversals if the transition involves axial dipole energy cascade to higher axial degrees. Evidence for such an energy transfer is found in the historical record of the geomagnetic secular variation.  相似文献   

20.
Some second order rain attenuation statistics such as fade duration and fade slope are investigated on the basis of experimental measurements of received signals using the GSAT-14 satellite beacon signal at 20.2 GHz for three years (2014–2016) over the tropical location Ahmedabad (23.02 0E, 72.510N), India with an Elevation angle of 630. Existing models of fade duration are compared with experimental data in this study and exponent of power law model of fade duration at Ka band is further explored. A new model for fade duration for Ka band for tropical locations is proposed where the constant of exponent of attenuation in the power law is found to be 0.143 instead of 0.055 used in ITU-R. Other relevant parameters for implementation of fade mitigation technique to prevent the link outage like cumulative distribution of signal fade rate, maximum and minimum fade rise and fade fall are also studied. Fade slope asymmetry over tropical region is also investigated. Keeping in view of exploiting the commercial launch of Ka band in Indian region there is an urgent need for validation of the existing models of fade slope (specially looking into fade symmetry) and fade duration. It will help the SATCOM (Satellite Communication) link designer to improve closed loop fade mitigation technique to minimize the possible link failure/link outage over the tropical region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号