首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 131 毫秒
1.
In this study, we evaluate Sentinel-3A satellite synthetic aperture radar (SAR) altimeter observations along the Northwest Atlantic coast, spanning the Nova Scotian Shelf, Gulf of Maine, and Mid-Atlantic Bight. Comparisons are made of altimeter sea surface height (SSH) measurements from three different altimeter data processing approaches: fully-focused synthetic aperture radar (FFSAR), un-focused SAR (UFSAR), and conventional low-resolution mode (LRM). Results show that fully-focused SAR data always outperform LRM data and are comparable or slightly better than the nominal un-focused SAR product. SSH measurement noise in both SAR-mode datasets is significantly reduced compared to LRM. FFSAR SSH 20-Hz noise levels, derived from 80-Hz FFSAR data, are lower than 20-Hz UFSAR SSH with 25% noise reduction offshore of 5 km, and 55–70% within 5 km of the coast. The offshore noise improvement is most likely due to the higher native along-track data posting rate (80 Hz for FFSAR, and 20 Hz for UFSAR), while the large coastal improvement indicates an apparent FFSAR data processing advantage approaching the coastlines. FFSAR-derived geostrophic ocean current estimates exhibit the lowest bias and noise when compared to in situ buoy-measured currents. Assessment at short spatial scales of 5–20 km reveals that Sentinel-3A SAR data provide sharper and more realistic measurement of small-scale sea surface slopes associated with expected nearshore coastal currents and small-scale gyre features that are much less well resolved in conventional altimetric LRM data.  相似文献   

2.
This paper describes an innovative method for processing nadir altimeter data acquired in Synthetic Aperture Radar (SAR) mode, enhancing the system performances over open ocean. Similarly to the current SAR data processing scheme, the so-called LR-RMC (Low Resolution with Range Migration Correction) method, originally designed by Phalippou and Demeester (2011), includes Doppler beam forming, Doppler shift correction and range correction. In LR-RMC, however, an alternative and less complex averaging (stacking) operation is used so that all the Doppler beams produced in a radar cycle (4 bursts of 64 beams for the open-burst Sentinel-3-mode altimeter) are incoherently combined to form a multi-beam echo. In that manner, contrarily to the narrow-band SAR technique, the LR-RMC processing enlarges the effective footprint to average out the effects of surface waves and particularly those from small sub-mesoscale structures (<1 km) that are known to impact SAR-mode performances. On the other hand, the number of averaged beams is as high as in current SAR-mode processing, thus providing a noise reduction at least equally good. The LR-RMC method has the added benefit of reducing the incoherent integration time with respect to the SAR-mode processing (50 ms compared to 2.5 s) limiting possible surface movement effects. By processing one year of Sentinel-3A SRAL SAR-mode data using the LR-RMC method, it is shown that the swell impact on the SAR altimeter performances is totally removed and that an improvement of 10–50% is obtained in the measurement noise of the sea surface height and significant wave height with respect to SAR mode. Additionally, observational capabilities over the middle scales are enhanced potentially allowing the ocean mesoscale features to be retrieved and observations assimilated more usefully in ocean models.  相似文献   

3.
Broadband electrostatic noise (BEN) is commonly observed in different regions of the Earth’s magnetosphere, eg., auroral region, plasma sheet boundary layer, etc. The frequency of these BENs lies in the range from lower hybrid to the local electron plasma frequency and sometimes even higher. Spacecraft observations suggest that the high and low-frequency parts of BEN appear to be two different wave modes. There is a well established theory for the high-frequency part which can be explained by electrostatic solitary waves, however, low-frequency part is yet to be fully understood. The linear theory of low-frequency waves is developed in a four-component magnetized plasma consisting of three types of electrons, namely cold background electron, warm electrons, warm electron beam and ions. The electrostatic dispersion relation is solved, both analytically and numerically. For the parameters relevant to the auroral region, our analysis predict excitation of electron acoustic waves in the frequency range of 17 Hz to 2.6 kHz with transverse wavelengths in range of (1–70) km. The results from this model may be applied to explain some features of the low-frequency part of the broadband electrostatic noise observed in other regions of the magnetosphere.  相似文献   

4.
We demonstrate in this work how we can take advantage of known unfocused SAR (UF-SAR) retracking methods (e.g. the physical SAMOSA model) for retracking of fully-focused SAR (FF-SAR) waveforms. Our insights are an important step towards consistent observations of sea surface height, significant wave height and backscatter coefficient (wind speed) with both UF-SAR and FF-SAR. This is of particular interest for SAR altimetry in the coastal zone, since coastal clutter may be filtered out more efficiently in the high-resolution FF-SAR waveform data, which has the potential to improve data quality. We implemented a multi-mission FF-SAR altimetry processor for Sentinel-3 (S3) and Sentinel-6 Michael Freilich (S6), using a back-projection algorithm, and analysed ocean waveform statistics compared to multilooked UF-SAR. We find for Sentinel-3 that the averaged power waveforms of UF-SAR and FF-SAR over ocean are virtually identical, while for Sentinel-6 the FF-SAR power waveforms better resemble the UF-SAR zero-Doppler beam. We can explain and model the similarities and differences in the data via theoretical considerations of the waveform integrals. These findings suggest to use the existing UF-SAR SAMOSA model for retracking S3 FF-SAR waveforms but the SAMOSA zero-Doppler beam model for S6 FF-SAR waveforms, instead. Testing the outlined approach over short track segments, we obtain range biases between UF-SAR and FF-SAR lower than 2 mm and significant wave height biases lower than 5 cm.  相似文献   

5.
Halley (75.5°S, 26.7°W, L = 4.3) is well placed for reception of subionospheric signals from the Siple transmitter. Occasionally a two-hop magnetospheric response to such signals can be observed. The data presented here are relevant to the problems of the radiation and propagation of VLF waves in the polar earth/ionosphere waveguide, duct stimulation and ducted wave amplification and the growth of triggered emissions. An upper sideband emission 20–40 Hz higher in frequency than the transmitted pulse was often received at a similar strength to, and simultaneously with the two-hop whistler mode echo.  相似文献   

6.
MLR events and associated triggered emissions observed by DEMETER   总被引:1,自引:0,他引:1  
This paper gives an overview of different sets of new Magnetospheric Line Radiation (MLR) observed by the satellite DEMETER. Different types of emissions have been observed: emissions called Power Line Harmonic Radiation (PLHR) with frequency lines exactly separated by 50/100 or 60/120 Hz, emissions with frequency lines not exactly separated by 50/100 or 60/120 Hz and drifting in frequency (MLR). By comparison with past observations one can say that some MLR events are due to man-made PLHR which may suffer a non-linear gyro-resonant interaction at the magnetic equator. It is also shown that periodic emissions are very often associated with the MLR. In this case the origin of these waves is natural. The lines are produced by the periodicity and the frequency band limits of the individual elements which causes the appearance of lines on the spectrograms. Finally the paper shows that MLR can trigger emissions.  相似文献   

7.
More and more attention is paid to Geosynchronous Orbit (GEO) Synthetic Aperture Radar (SAR) in recent years due to its fine temporal resolution and large coverage, so that GEO SAR will play an important role in monitoring natural disasters, but its imaging is more difficult compared to lower Earth orbit (LEO) SAR because of the increase of orbit height. This paper mainly studies the coverage property and focusing method in GEO SAR. As is known to us, the coverage of a GEO SAR satellite can reach 1/3 of the whole Earth, and the revisiting time can reduce to 2 h, which will remarkably improve the capability in ocean applications, earth dynamics and natural hazards management and so on. Compared with the imaging in LEO SAR, a problem in GEO SAR is that the linear trajectory model can bring a big error due to the long synthetic aperture time, so that the classical imaging algorithms in LEO SAR cannot be directly applied in GEO SAR. Using the Norm method and Taylor expansion method, this paper gains an accurate slant range model, which can resolve the big error of the linear trajectory at perigee and collapse of the linear trajectory at apogee. Furthermore, this paper deduces a novel imaging algorithm for GEO SAR by means of series reversion, which realizes the focusing on large scene under the synthetic aperture time of 100 s. Finally, the simulation results at apogee and perigee prove the correction of the slant range model and imaging algorithm.  相似文献   

8.
The integer ambiguity resolution (AR) of carrier phase is significant for Global Navigation Satellite System (GNSS) precise positioning. However, in kinematic case, single-epoch AR methods based on alone GNSS are usually not reliable due to the instable pseudorange accuracy. Moreover, the computation of classical AR method Least Squares Ambiguity Decorrelation Adjustment (LAMBDA) is large. Thus, the inertial measurement unit (IMU) is introduced, a new inertial-aided AR method that directly rounds the float ambiguity of BeiDou triple-frequency combined observations, which is characterized by long wavelength, low carrier-phase noise and ionospheric delay, is proposed. The mathematical model of the new method is derived first. Then the impacts of the carrier-phase noise, ionospheric delay and inertial navigation system (INS) position error on the AR success ratio of combined observation are analyzed through probabilistic approach. Based on above investigation, the combinations (0, ?1, 1), (1, 4, ?5) and (4, ?2, ?3) are selected to resolve the original ambiguity. A vehicular integrated navigation test is performed to demonstrate the proposed method. The results show that the average AR success ratios of the three selected combinations, whose float ambiguity errors are 0.041, 0.146, 0.279 cycle respectively, are above 97.25% without regard to low-elevation C05. With respect to positioning accuracy based on our AR method when compared with IE software, the east, north, up error RMS of position are 0.042, 0.024, 0.069 m, respectively. In terms of the AR recover after the BeiDou signals outage, as long as 62 s BeiDou signal complete outage, all the ambiguities of all satellites could be re-fixed immediately. Besides, during the 90 s signals partial outage, the AR is not influenced by the position error, since the float ambiguity errors are all below half-cycle. The research of this contribution demonstrates the effectiveness of the proposed new method, which indicates it is applicable to kinematic positioning, even in BDS degraded and denied environments.  相似文献   

9.
The main objective of our work was to investigate the impact of rain on wave observations from C-band (~5.3 GHz) synthetic aperture radar (SAR) in tropical cyclones. In this study, 10 Sentinel-1 SAR images were available from the Satellite Hurricane Observation Campaign, which were taken under cyclonic conditions during the 2016 hurricane season. The third-generation wave model, known as Simulating WAves Nearshore (SWAN) (version 41.31), was used to simulate the wave fields corresponding to these Sentinel-1 SAR images. In addition, rainfall data from the Tropical Rainfall Measuring Mission satellite passing over the spatial coverage of the Sentinel-1 SAR images were collected. The simulated results were validated against significant wave heights (SWHs) from the Jason-2 altimeter and European Centre for Medium-Range Weather Forecasts data, revealing a root mean square error (RMSE) of ~0.5 m with a 0.25 scatter index. Winds retrieved from the VH-polarized Sentinel-1 SAR images using the Sentinel-1 Extra Wide-swath Mode Wind Speed Retrieval Model after Noise Removal were taken as prior information for wave retrieval. It was discovered that rain did indeed affect the SAR wave retrieval, as evidenced by the 3.21-m RMSE of SWHs between the SAR images and the SWAN model, which was obtained for the ~1000 match-ups with raindrops. The raindrops dampened the wave retrieval when the rain rate was < ~5 mm/hr; however, they enhanced wave retrieval for higher rain rates. It was also found that the portion of the rain-induced ring wave with a wave number > 0.05 rad/m (~125 m wavelength) was clearly observed in the SAR-derived wave spectra.  相似文献   

10.
A reprocessing of sea-level anomalies (SLA) resulting from X-TRACK coastal altimetry was carried out for the ENVISAT (2002–2010) and TOPEX/POSEIDON-Jason (1992–2019) satellite missions in the coastal area of the Mexican Caribbean. This consisted of applying a tidal correction to coastal altimetry sea level observations. Harmonic analysis of five coastal tide gauge records was performed to estimate the most important tidal components of the area, resulting on M2, N2, O1, S2, K1, MF, and MM. The tidal signal was reconstructed with the seven tidal components using the TPXO9 model. The SLA signals corrected with the seven tidal components were validated with in situ data from coastal tide gauges. The validation showed that the TPXO9 tidal barotropic model (1/30° grid) used to reconstruct the tidal signal with the seven representative tidal components performed better than the FES2012 global model (1/16° grid) that uses 33 tidal components. The reprocessed SLAs showed clear seasonality with significant signals at 4, 6, and 12 months, with the annual signal being the dominant one. In the Mexican Caribbean coastal zone, oceanographic processes with different scales (from coastal to mesoscale) converge, showing their complexity in the different SLA signals observed. The aim of this work is to contribute to the analysis of coastal altimetry data and understanding the sea level variations in the Mexican Caribbean. This work is the first step in the implementation of methodologies that take advantage of coastal satellite altimetry in the Caribbean Sea.  相似文献   

11.
Gravitational waves are ripples in space–time predicted by Albert Einstein's general relativity and provide a new way to understand the universe. Space-borne detectors of gravitational waves, extending to very large scales, can effectively detect the middle and low-frequency gravitational wave source with the frequency band of 0.1 mHz–1 Hz. The test masses are used to make an inertial reference point in the detection of gravitational waves. Currently, there are few studies concerning the ideal release position for the test masses in the detection of gravitational waves. In this study, we give a general solution for test mass release points to minimize the relative motion between the test mass and the satellite mass center. Moreover, we discuss the situation when the release point equation is not satisfied, and the ideal release point of the along-track. Finally, we report on simulations that verify the accuracy of the theoretical derivation.  相似文献   

12.
提出了一种基于空间坐标转换,利用卫星位置、速度参数精确估算星载SAR(Synthetic Aperture Radar)全观测带多普勒参数的方法.利用卫星速度、位置,通过星载SAR空间几何模型和坐标转换关系,建立SAR图像中斜距同卫星下视角之间的四次方程,解出下视角并进一步计算出该斜距处的多普勒参数值.仿真结果表明,该方法在无卫星位置、速度误差情况下估算精度达到0.02Hz(多普勒中心频率)和2×10-4Hz/s(多普勒调频率);存在卫星位置测量误差(300m)以及速度测量误差(0.3m/s)的情况下,估算精度达到0.8Hz(多普勒中心频率)和0.07Hz/s(多普勒调频率).该方法适用于单星SAR以及分布式SAR高精度多普勒参数的估算.   相似文献   

13.
This paper presents the results of a Calval analysis performed for the Cryosat-2 mission over ocean. The data set used in this analysis consists of products generated by the Cryosat-2 Processor Prototype developed by CNES (Center National d’Etudes Spatiales). This data set has been analysed focusing on LRM (Low Resolution Mode) mode only. One major objective of this paper is to illustrate the potential of Cryosat-2 data over ocean, mainly for waves and Sea Level Anomaly applications. All the results indicate very good performances of the SIRAL (SAR/Interferometric Altimeter) altimeter over ocean. Crossover standard deviation is close to 6.5 cm over the analysed period (3 months) which is close to the Jason-2 and ENVISAT performance. All these results confirm that Cryosat’s altimeter can provide data almost as valuable as other flying altimetric missions, and that it has the potential to contribute to oceanography (e.g. multi-mission climate record, mesoscale monitoring in near real time) and to geodesy (e.g. mean sea surface, bathymetry).  相似文献   

14.
利用全电流双流体模型分析了地面磁扰动信号在近地层大气中的传播.结果表明磁扰动信号的传播模式受中性粒子elax-elax离子碰撞频率、磁扰动频率、磁粘滞系数以及大气离化系数等参数的影响.中性粒子碰撞效应导致近地层大气中不存在阿尔芬波传播通道.当磁扰动频率远小于0.001Hz时,磁扰动传播存在趋肤效应,且在近地大气中从高往下逐渐增强;当磁扰动频率远大于0.001Hz时,磁扰动以类似于真空电磁波的模式在近地大气中传播.   相似文献   

15.
Remote sensing using GNSS signals: Current status and future directions   总被引:1,自引:0,他引:1  
The refracted, reflected and scattered signals of global navigation satellite systems (GNSS) have been successfully used to remotely sense the Earth’s surface and atmosphere. It has demonstrated its potential to sense the atmosphere and ionosphere, ocean, land surfaces (including soil moisture) and the cryosphere. These new measurements, although in need of refinement and further validation in many cases, can be used to complement existing techniques and sensors, e.g., radiosonde, ionosonde, radar altimetry and synthetic aperture radar (SAR). This paper presents the current status and new developments of remote sensing using GNSS signals as well as its future directions and applications. Some notable emerging applications include monitoring sea ice, dangerous sea states, ocean eddy and storm surges. With the further improvement of the next generation multi-frequency GNSS systems and receivers and new space-based instruments utilizing GNSS reflections and refractions, new scientific applications of GNSS are expected in various environment remote sensing fields in the near future.  相似文献   

16.
BeiDou-3 Navigation Satellite System (BDS-3) satellites are equipped with the new generation GNSS signals B1C and B2a, which support the interoperability with GPS and Galileo systems. In this study, the pseudo-range multipath error and carrier phase observation noise of the BDS-3 B1C and B2a signals were evaluated based on zero baseline measurements from the day of year (DOY) 113 to 116, 2020. Further, the precision and performance of the single point positioning (SPP) and precise point positioning (PPP) are assessed at 9 stations. This assessment manifests that the standard deviations (STDs) of the pseudo-range multipath error are about 0.09 ~ 0.22 m, while STDs of the carrier phase observation noise are about 0.075 mm. For the single-frequency SPP, its positioning precision is about 2.03 ~ 4.85 m and 3.29 ~ 10.73 m at the 99.99% confidence level in horizontal and vertical directions, respectively, while the dual-frequency SPP precision is about 1.92 ~ 8.02 m and 4.81 ~ 12.77 m in horizontal and vertical directions, respectively. For the daily static PPP, the convergence time is about 20 ~ 30 min, while the daily positioning precision can reach 1.38 ~ 4.42 cm and -1.31 ~ 4.34 cm in horizontal and vertical directions, respectively. In general, the quality and the SPP and PPP performance of the BDS-3 B1C&B2a signals are comparable to the GPS and Galileo.  相似文献   

17.
空间探测的最新结果表明,太阳大气中广泛存在小尺度喷发事件,这些事件被认为是由新浮现磁通量导致的小尺度磁重联的表现.小尺度磁重联同时会产生高频Alfven波.本文给出了建立在上述思想基础上的描述日冕加热及太阳风加速的时变二元流体模型的一组数值解,显示解的时间演化、收敛特性及守恒特性.在对由过渡区发出的高频Alfven波频谱的适当假设下,数值解能够解释日冕及太阳风等多方面的观测结果,包括日冕加热,极冕洞密度径向变化,太阳风近日冕底部加速,及在03AU观测到的高速流特征.  相似文献   

18.
Sea-surface solar radiation (abbreviated as photosynthetically available radiation, PAR) in the visible wavelength (400–700 nm) is an essential parameter to estimate marine primary productivity and understanding phytoplankton dynamics, upper ocean physics and biogeochemical processes. Although many remote-sensing models were developed to estimate daily PAR (DPAR) from ocean colour data, these models often produce biases in the DPAR products under cloudy-sky and complex atmospheric conditions due to the lack of parameterization to deal with the cloud cover conditions and insufficient in-situ DPAR data. This study presents an Extended Sea-surface Solar Irradiance Model (ESSIM) for estimating DPAR over the global ocean. The ESSIM uses the direct and diffuse components from the Simple sea-surface Solar Irradiance Model (SSIM) along with a new parameter to handle cloudy conditions. The ESSIM produced DPAR products with greater accuracy under both clear and cloudy conditions. Its performance was tested on the time-series MODIS-Aqua images and compared with the concurrent in-situ data and the results from two global models. Results showed that the DPAR values produced by ESSIM agree with in-situ data better than the global models for all-sky conditions (with a mean relative error of 11.267 %; a root mean square error of 5.563 Em?2day?1; and a mean net bias of 2.917 Em?2day?1). The ESSIM performed slightly better than the SSIM for clear conditions and the Frouin's Operational Algorithm (FOA) for all-sky conditions. As the new parameterization accounts for cloudy conditions, the ESSIM produced more accurate results for cloud cover conditions across latitudes (up to 60°). The time-series Level-3 binned MODIS-Aqua data (global gridded) also demonstrated that the ESSIM improved the accuracy of DPAR products and produced spatially and temporally consistent DPAR products over the global ocean regardless of the seasons and sky conditions.  相似文献   

19.
The overlapping-frequency signals from different GNSS constellations are interoperable and can be integrated as one constellation in multi-GNSS positioning when inter-system bias (ISB) is properly disposed. The look-up table method for ISB calibration can enhance the model strength, maximize the number of integer-estimable ambiguities, and thus is preferred. However, the characteristics and magnitudes of the receiver code ISB and phase fractional ISB (F-ISB) are not well known and the wrong values of the biases can seriously degrade the positioning results. In this contribution, we first estimate the between-receiver code ISB and phase F-ISB of hundreds of the baselines up to around 25km in the European Permanent GNSS Network (EPN) and the Multi-GNSS Experiment (MGEX) for the overlapping frequencies L1-E1 (L1), L5-E5a (L5) and E5b-B2b (L7). The data collected from 1st January 2016 to 1st January 2019. Second, the receiver-type and firmware-version combinations for the receivers of Trimble, Leica, Javad, Septentrio and NovAtel are carefully classified. Results show that the Septentrio receivers have consistent code and phase ISB values for the three overlapping frequencies i.e. only one value for each frequency and no receivers are different. The Leica, Trimble and Javad receivers have two or more ISB values for at least one of the three frequencies. A few receivers with biases to the groups are also found and listed. Third, the code ISB and phase F-ISB of the groups are adjusted by the least-squares method. The root mean square errors (RMSE) of the least square adjustment are 0.240 m, 0.250 m and 0.200 m for code of L1, L5 and L7 frequencies, respectively, and are 0.0009 m, 0.0015 m and 0.0031 m for phase of L1, L5 and L7 frequencies, respectively. Finally, the effects of code ISB errors on code positing are investigated with the zero-baseline MAT1_MATZ. The distance root mean square error (DRMS) of L1-E1 code positioning can be reduced by 48.2% with 5 GPS and Galileo satellites and the DRMS degrades quickly when the code ISB error is larger.  相似文献   

20.
The occurrence of ionospheric irregularities at high latitudes, with dimensions of several kms down to decameter scale size shows strong correlation with geomagnetic disturbance, season and solar activity. Transionospheric radio waves propagating through these irregularities experience rapid random fluctuations in phase and/or amplitude of the signal at the receiver, termed scintillation, which can degrade GNSS services. Thus, investigation and prediction of this scintillation effect is very important. To investigate such scintillation effects, a GISTM (GPS Ionospheric Scintillation and TEC Monitoring) NovAtel dual frequency (L1/L2) GPS receiver has been installed at Trondheim, Norway (63.41°63.41° N, 10.4°10.4° E), capable of collecting scintillation indices at a 1 min rate as well as the raw data (phase and intensity) of the satellite signals at a 50 Hz sampling rate and TEC (Total Electron Content) at a 1 Hz rate. Many researchers have reported that both phase and amplitude scintillation is closely associated with TEC fluctuations or associated with a significant developing enhancement or depletion in the TEC. In this study, a novel analogous phase index is developed which provides samples at a 1 min rate. Generally the scintillation indices can help in estimating the irregularity scintillation effect at a one minute rate, but such procedures are time consuming if DFTs of the phase and/or amplitude at a 50 Hz data are required. In this study, instead, this analogous phase index is estimated from 1 Hz rate TEC values obtained from the raw signals and is then compared for weak, moderate and strong scintillation at Trondheim for one year of data collected from the installed GPS receiver. The spectral index of the irregularities (that is the inverse power law of their spatial spectrum) is determined from the resultant phase scintillation psd. The correlations of the scintillation indices and spectral indices with the analogous phase index have been investigated under different geomagnetic conditions (represented by the Kp index) and an approximate linear correlation of phase scintillation with the analogous phase index was found. Then a principal advantage of this index is that it achieves this correlation without requiring a high sampling data rate and the need for DFTs. Thus, the index seems a good candidate for developing a simple means of ionospheric scintillation prediction which could also be utilized in the development of alerts using regional mappings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号